Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Membrane-localized activation of glucuronide prodrugs by β-glucuronidase enzymes

Abstract

Gene-mediated enzyme prodrug therapy (GDEPT) seeks to increase the therapeutic index of anti-neoplastic agents by promoting selective activation of relatively nontoxic drug derivatives at sites of specific enzyme expression. Glucuronide prodrugs are attractive for GDEPT due to their low toxicity, bystander effect in the interstitial tumor space and the large range of possible glucuronide drug targets. In this study, we expressed human, murine and Esherichia coli β-glucuronidase on tumor cells and examined their in vitro and in vivo efficacy for the activation of glucuronide prodrugs of 9-aminocamptothecin and p-hydroxy aniline mustard. We show that (1) fusion of β-glucuronidase to the Ig-like C2-type and Ig-hinge-like domains of the B7-1 antigen followed by the B7-1 transmembrane domain anchored high levels of active murine and human β-glucuronidase on cells, (2) strong bystander killing of tumor cells was achieved in vitro by murine β-glucuronidase activation of prodrug, (3) potent in vivo anti-tumor activity was achieved by prodrug treatment of tumors that expressed murine β-glucuronidase and (4) the p-hydroxy aniline prodrug was more effective in vivo than the 9-aminocamptothecin prodrug. Our results demonstrate that surface expression of murine β-glucuronidase for activation of a glucuronide prodrug of p-hydroxy aniline mustard may be useful for more selective therapy of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hamstra DA, Lee KC, Tychewicz JM, Schepkin VD, Moffat BA, Chen M et al. The use of 19F spectroscopy and diffusion-weighted MRI to evaluate differences in gene-dependent enzyme prodrug therapies. Mol Ther 2004; 10: 916–928.

    Article  CAS  PubMed  Google Scholar 

  2. Moolten FL, Wells JM . Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst 1990; 82: 297–300.

    Article  CAS  PubMed  Google Scholar 

  3. Sung MW, Yeh HC, Thung SN, Schwartz ME, Mandeli JP, Chen SH et al. Intratumoral adenovirus-mediated suicide gene transfer for hepatic metastases from colorectal adenocarcinoma: results of a phase I clinical trial. Mol Ther 2001; 4: 182–191.

    Article  CAS  PubMed  Google Scholar 

  4. Pandha HS, Martin LA, Rigg A, Hurst HC, Stamp GW, Sikora K et al. Genetic prodrug activation therapy for breast cancer: A phase I clinical trial of erbB-2-directed suicide gene expression. J Clin Oncol 1999; 17: 2180–2189.

    Article  CAS  PubMed  Google Scholar 

  5. Mesnil M, Yamasaki H . Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res 2000; 60: 3989–3999.

    CAS  PubMed  Google Scholar 

  6. Rubsam LZ, Davidson BL, Shewach DS . Superior cytotoxicity with ganciclovir compared with acyclovir and 1-beta-D-arabinofuranosylthymine in herpes simplex virus-thymidine kinase-expressing cells: a novel paradigm for cell killing. Cancer Res 1998; 58: 3873–3882.

    CAS  PubMed  Google Scholar 

  7. Nishida M, Futami S, Morita I, Maekawa K, Murota SI . Hypoxia-reoxygenation inhibits gap junctional communication in cultured human umbilical vein endothelial cells. Endothelium 2000; 7: 279–286.

    Article  CAS  PubMed  Google Scholar 

  8. Thust R, Tomicic M, Klocking R, Voutilainen N, Wutzler P, Kaina B . Comparison of the genotoxic and apoptosis-inducing properties of ganciclovir and penciclovir in Chinese hamster ovary cells transfected with the thymidine kinase gene of herpes simplex virus-1: implications for gene therapeutic approaches. Cancer Gene Ther 2000; 7: 107–117.

    Article  CAS  PubMed  Google Scholar 

  9. Huber BE, Austin EA, Richards CA, Davis ST, Good SS . Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA 1994; 91: 8302–8306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lawrence TS, Rehemtulla A, Ng EY, Wilson M, Trosko JE, Stetson PL . Preferential cytotoxicity of cells transduced with cytosine deaminase compared to bystander cells after treatment with 5-flucytosine. Cancer Res 1998; 58: 2588–2593.

    CAS  PubMed  Google Scholar 

  11. Haberkorn U, Oberdorfer F, Gebert J, Morr I, Haack K, Weber K et al. Monitoring gene therapy with cytosine deaminase: in vitro studies using tritiated-5-fluorocytosine. J Nucl Med 1996; 37: 87–94.

    CAS  PubMed  Google Scholar 

  12. Miller CR, Williams CR, Buchsbaum DJ, Gillespie GY . Intratumoral 5-fluorouracil produced by cytosine deaminase/5-fluorocytosine gene therapy is effective for experimental human glioblastomas. Cancer Res 2002; 62: 773–780.

    CAS  PubMed  Google Scholar 

  13. Shand N, Weber F, Mariani L, Bernstein M, Gianella-Borradori A, Long Z et al. A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Hum Gene Ther 1999; 10: 2325–2335.

    Article  CAS  PubMed  Google Scholar 

  14. Crystal RG, Hirschowitz E, Lieberman M, Daly J, Kazam E, Henschke C et al. Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine. Hum Gene Ther 1997; 8: 985–1001.

    Article  CAS  PubMed  Google Scholar 

  15. Freytag SO, Khil M, Stricker H, Peabody J, Menon M, DePeralta-Venturina M et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res 2002; 62: 4968–4976.

    CAS  PubMed  Google Scholar 

  16. Rainov NG . A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 2000; 11: 2389–2401.

    Article  CAS  PubMed  Google Scholar 

  17. Haisma HJ, van Muijen M, Pinedo HM, Boven E . Comparison of two anthracycline-based prodrugs for activation by a monoclonal antibody-beta-glucuronidase conjugate in the specific treatment of cancer. Cell Biophys 1994; 24-25: 185–192.

    Article  CAS  PubMed  Google Scholar 

  18. Houba PH, Boven E, van der Meulen-Muileman IH, Leenders RG, Scheeren JW, Pinedo HM et al. A novel doxorubicin-glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy: distribution and efficacy in experimental human ovarian cancer. Br J Cancer 2001; 84: 550–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schmidt F, Monneret C . Prodrug Mono Therapy: synthesis and biological evaluation of an etoposide glucuronide-prodrug. Bioorg Med Chem 2003; 11: 2277–2283.

    Article  CAS  PubMed  Google Scholar 

  20. Leu YL, Roffler SR, Chern JW . Design and synthesis of water-soluble glucuronide derivatives of camptothecin for cancer prodrug monotherapy and antibody-directed enzyme prodrug therapy (ADEPT). J Med Chem 1999; 42: 3623–3628.

    Article  CAS  PubMed  Google Scholar 

  21. Angenault S, Thirot S, Schmidt F, Monneret C, Pfeiffer B, Renard P . Cancer chemotherapy: a SN-38 (7-ethyl-10-hydroxycamptothecin) glucuronide prodrug for treatment by a PMT (Prodrug MonoTherapy) strategy. Bioorg Med Chem Lett 2003; 13: 947–950.

    Article  CAS  PubMed  Google Scholar 

  22. de Bont DB, Leenders RG, Haisma HJ, van der Meulen-Muileman I, Scheeren HW . Synthesis and biological activity of beta-glucuronyl carbamate-based prodrugs of paclitaxel as potential candidates for ADEPT. Bioorg Med Chem 1997; 5: 405–414.

    Article  CAS  PubMed  Google Scholar 

  23. Bouvier E, Thirot S, Schmidt F, Monneret C . First enzymatically activated Taxotere prodrugs designed for ADEPT and PMT. Bioorg Med Chem 2004; 12: 969–977.

    Article  CAS  PubMed  Google Scholar 

  24. Wang SM, Chern JW, Yeh MY, Ng JC, Tung E, Roffler SR . Specific activation of glucuronide prodrugs by antibody-targeted enzyme conjugates for cancer therapy. Cancer Res 1992; 52: 4484–4491.

    CAS  PubMed  Google Scholar 

  25. Lougerstay-Madec R, Florent JC, Monneret C, Nemati F, Poupon MF . Synthesis of self-immolative glucuronide-based prodrugs of a phenol mustard. Anticancer Drug Des 1998; 13: 995–1007.

    CAS  PubMed  Google Scholar 

  26. Cheng TL, Chou WC, Chen BM, Chern JW, Roffler SR . Characterization of an antineoplastic glucuronide prodrug. Biochem Pharmacol 1999; 58: 325–328.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng TL, Wei SL, Chen BM, Chern JW, Wu MF, Liu PW et al. Bystander killing of tumour cells by antibody-targeted enzymatic activation of a glucuronide prodrug. Br J Cancer 1999; 79: 1378–1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weyel D, Sedlacek HH, Muller R, Brusselbach S . Secreted human beta-glucuronidase: a novel tool for gene-directed enzyme prodrug therapy. Gene Therapy 2000; 7: 224–231.

    Article  CAS  PubMed  Google Scholar 

  29. Heine D, Muller R, Brusselbach S . Cell surface display of a lysosomal enzyme for extracellular gene-directed enzyme prodrug therapy. Gene Therapy 2001; 8: 1005–1010.

    Article  CAS  PubMed  Google Scholar 

  30. Bosslet K, Czech J, Hoffmann D . Tumor-selective prodrug activation by fusion protein-mediated catalysis. Cancer Res 1994; 54: 2151–2159.

    CAS  PubMed  Google Scholar 

  31. Chen BM, Chan LY, Wang SM, Wu MF, Chern JW, Roffler SR . Cure of malignant ascites and generation of protective immunity by monoclonal antibody-targeted activation of a glucuronide prodrug in rats. Int J Cancer 1997; 73: 392–402.

    Article  CAS  PubMed  Google Scholar 

  32. Cheng TL, Chen BM, Chern JW, Wu MF, Roffler SR . Efficient clearance of poly(ethylene glycol)-modified immunoenzyme with anti-PEG monoclonal antibody for prodrug cancer therapy. Bioconjug Chem 2000; 11: 258–266.

    Article  CAS  PubMed  Google Scholar 

  33. Bosslet K, Straub R, Blumrich M, Czech J, Gerken M, Sperker B et al. Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer Res 1998; 58: 1195–1201.

    CAS  PubMed  Google Scholar 

  34. Prijovich ZM, Chen BM, Leu YL, Chern JW, Roffler SR . Anti-tumour activity and toxicity of the new prodrug 9-aminocamptothecin glucuronide (9ACG) in mice. Br J Cancer 2002; 86: 1634–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roffler SR, Wang SM, Chern JW, Yeh MY, Tung E . Anti-neoplastic glucuronide prodrug treatment of human tumor cells targeted with a monoclonal antibody-enzyme conjugate. Biochem Pharmacol 1991; 42: 2062–2065.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng TL, Chen BM, Chan LY, Wu PY, Chern JW, Roffler SR . Poly(ethylene glycol) modification of beta-glucuronidase-antibody conjugates for solid-tumor therapy by targeted activation of glucuronide prodrugs. Cancer Immunol Immunother 1997; 44: 305–315.

    Article  CAS  PubMed  Google Scholar 

  37. Hsiang YH, Hertzberg R, Hecht S, Liu LF . Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 1985; 260: 14873–14878.

    CAS  PubMed  Google Scholar 

  38. Hsiang YH, Liu LF, Wall ME, Wani MC, Nicholas AW, Manikumar G et al. DNA topoisomerase I-mediated DNA cleavage and cytotoxicity of camptothecin analogues. Cancer Res 1989; 49: 4385–4389.

    CAS  PubMed  Google Scholar 

  39. Cheng TL, Wu PY, Wu MF, Chern JW, Roffler SR . Accelerated clearance of polyethylene glycol-modified proteins by anti-polyethylene glycol IgM. Bioconjug Chem 1999; 10: 520–528.

    Article  CAS  PubMed  Google Scholar 

  40. Wu CH, Balasubramanian WR, Ko YP, Hsu G, Chang SE, Prijovich ZM et al. A simple method for the production of recombinant proteins from mammalian cells. Biotechnol Appl Biochem 2004; 40: 167–172.

    Article  CAS  PubMed  Google Scholar 

  41. Chou WC, Liao KW, Lo YC, Jiang SY, Yeh MY, Roffler SR . Expression of chimeric monomer and dimer proteins on the plasma membrane of mammalian cells. Biotechnol Bioeng 1999; 65: 160–169.

    Article  CAS  PubMed  Google Scholar 

  42. Liao KW, Chen BM, Liu TB, Tzou SC, Lin YM, Lin KF et al. Stable expression of chimeric anti-CD3 receptors on mammalian cells for stimulation of antitumor immunity. Cancer Gene Ther 2003; 10: 779–790.

    Article  CAS  PubMed  Google Scholar 

  43. Marshall CJ, Franks LM, Carbonell AW . Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas. J Natl Cancer Inst 1977; 58: 1743–1751.

    Article  CAS  PubMed  Google Scholar 

  44. Liao KW, Chou WC, Lo YC, Roffler SR . Design of transgenes for efficient expression of active chimeric proteins on mammalian cells. Biotechnol Bioeng 2001; 73: 313–323.

    Article  CAS  PubMed  Google Scholar 

  45. Tannock IF, Rotin D . Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 1989; 49: 4373–4384.

    CAS  PubMed  Google Scholar 

  46. Su YC, Chuang KH, Wang YM, Cheng CM, Lin SR, Wang JY et al. Gene expression imaging by enzymatic catalysis of a fluorescent probe via membrane-anchored β-glucuronidase. Gene Therapy (Submitted).

  47. Liao KW, Lo YC, Roffler SR . Activation of lymphocytes by anti-CD3 single-chain antibody dimers expressed on the plasma membrane of tumor cells. Gene Therapy 2000; 7: 339–347.

    Article  CAS  PubMed  Google Scholar 

  48. Jain S, Drendel WB, Chen ZW, Mathews FS, Sly WS, Grubb JH . Structure of human beta-glucuronidase reveals candidate lysosomal targeting and active-site motifs. Nat Struct Biol 1996; 3: 375–381.

    Article  CAS  PubMed  Google Scholar 

  49. Zhen L, Rusiniak ME, Swank RT . The beta-glucuronidase propeptide contains a serpin-related octamer necessary for complex formation with egasyn esterase and for retention within the endoplasmic reticulum. J Biol Chem 1995; 270: 11912–11920.

    Article  CAS  PubMed  Google Scholar 

  50. Murray D, Meyn RE . Cell cycle-dependent cytotoxicity of alkylating agents: determination of nitrogen mustard-induced DNA cross-links and their repair in Chinese hamster ovary cells synchronized by centrifugal elutriation. Cancer Res 1986; 46: 2324–2329.

    CAS  PubMed  Google Scholar 

  51. Chen BM, Chen JY, Kao M, Lin JB, Yu MH, Roffler SR . Elevated topoisomerase I activity in cervical cancer as a target for chemoradiation therapy. Gynecol Oncol 2000; 79: 272–280.

    Article  CAS  PubMed  Google Scholar 

  52. de Graaf M, Nevalainen TJ, Scheeren HW, Pinedo HM, Haisma HJ, Boven E . A methylester of the glucuronide prodrug DOX-GA3 for improvement of tumor-selective chemotherapy. Biochem Pharmacol 2004; 68: 2273–2281.

    Article  CAS  PubMed  Google Scholar 

  53. Sharma SK, Bagshawe KD, Melton RG, Sherwood RF . Human immune response to monoclonal antibody-enzyme conjugates in ADEPT pilot clinical trial. Cell Biophys 1992; 21: 109–120.

    Article  CAS  PubMed  Google Scholar 

  54. Freytag SO, Stricker H, Pegg J, Paielli D, Pradhan DG, Peabody J et al. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer. Cancer Res 2003; 63: 7497–7506.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Grants from the National Science Council, Taipei, Taiwan (NSC-93-2311-B-001-022) and the National Health Research Institutes (NHRI-EX94-9420B1) supported this work. We thank Andre Lieber and Daniel Stone for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S R Roffler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, KC., Cheng, TL., Leu, YL. et al. Membrane-localized activation of glucuronide prodrugs by β-glucuronidase enzymes. Cancer Gene Ther 14, 187–200 (2007). https://doi.org/10.1038/sj.cgt.7700999

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700999

Keywords

This article is cited by

Search

Quick links