Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Small interfering RNA targeting Raf-1 inhibits tumor growth in vitro and in vivo

Abstract

Raf-1 is a cytosolic serine-threonine kinase that plays an important role in tumor cell growth, proliferation, and apoptosis. Upregulated Raf-1 activity has also been implicated in tumor angiogenesis and metastasis. In this study, we used a promising new RNA interfering technology that targets Raf-1 mRNA both in vitro and in vivo. We initially found that Raf-1 siRNA markedly reduced Raf-1 mRNA in MDA-MB-435 cells in vitro by approximately 75% compared to control siRNA treatment groups. Raf-1 siRNA also reduced cell number by inducing apoptosis in a number of cell lines including HUVEC, MDA-MB-435, and C6 cells. After screening several histidine–lysine polymers in complex with Raf-1 siRNA to reduce tumor growth, we further evaluated the efficacy of this siRNA in complex with the optimal histidine–lysine carrier to reduce the tumor growth in vivo. MDA-MB-435 xenografts treated by intratumoral injections of Raf-1 siRNA were significantly reduced compared with the control groups. By the fourth measurement, tumor growth was reduced by nearly 60% in the Raf-1 siRNA treatment group compared with the untreated group (P<.02). Taken together, our data provide evidence that Raf-1 siRNA may be an effective strategy for reducing tumor growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Mercer KE, Pritchard CA . Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim Biophys Acta. 2003;1653:25–40.

    CAS  PubMed  Google Scholar 

  2. O'Neill E, Kolch W . Conferring specificity on the ubiquitous Raf/MEK signalling pathway. Br J Cancer. 2004;90:283–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang S, Ghosh RN, Chellappan SP . Raf-1 physically interacts with Rb and regulates its function: a link between mitogenic signaling and cell cycle regulation. Mol Cell Biol. 1998;18:7487–7498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lau QC, Achenbach TV, Borchers O, Muller R, Slater EP . In vivo pro-apoptotic and antitumor efficacy of a c-Raf antisense phosphorothioate oligonucleotide: relationship to tumor size. Antisense Nucleic Acid Drug Dev. 2002;12:11–20.

    Article  CAS  PubMed  Google Scholar 

  5. Liu X, Yan S, Zhou T, Terada Y, Erikson RL . The MAP kinase pathway is required for entry into mitosis and cell survival. Oncogene. 2004;23:763–776.

    Article  CAS  PubMed  Google Scholar 

  6. Kasid U, Dritschilo A . RAF antisense oligonucleotide as a tumor radiosensitizer. Oncogene. 2003;22:5876–5884.

    Article  CAS  PubMed  Google Scholar 

  7. Grugel S, Finkenzeller G, Weindel K, Barleon B, Marme D . Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J Biol Chem. 1995;270:25915–25919.

    Article  CAS  PubMed  Google Scholar 

  8. Hood JD, Frausto R, Kiosses WB, Schwartz MA, Cheresh DA . Differential alphav integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J Cell Biol. 2003;162:933–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khatib AM, Fallavollita L, Wancewicz EV, Monia BP, Brodt P . Inhibition of hepatic endothelial E-selectin expression by C-raf antisense oligonucleotides blocks colorectal carcinoma liver metastasis. Cancer Res. 2002;62:5393–5398.

    CAS  PubMed  Google Scholar 

  10. Rocheleau CE, Downs WD, Lin R, et al. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell. 1997;90:707–716.

    Article  CAS  PubMed  Google Scholar 

  11. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811.

    Article  CAS  PubMed  Google Scholar 

  12. Hammond SM, Bernstein E, Beach D, Hannon GJ . An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404:293–296.

    Article  CAS  PubMed  Google Scholar 

  13. Bernstein E, Caudy AA, Hammond SM, Hannon GJ . Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–366.

    Article  CAS  PubMed  Google Scholar 

  14. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ . Argonaute2, a link between genetic and biochemical analyses of RNAi. Science. 2001;293:1146–1150.

    Article  CAS  PubMed  Google Scholar 

  15. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A . Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22:326–330.

    Article  CAS  PubMed  Google Scholar 

  16. Kim MH, Yuan X, Okumura S, Ishikawa F . Successful inactivation of endogenous Oct-3/4 and c-mos genes in mouse preimplantation embryos and oocytes using short interfering RNAs. Biochem Biophys Res Commun. 2002;296:1372–1377.

    Article  CAS  PubMed  Google Scholar 

  17. Kaul D, Sikand K . Defective RNA-mediated c-myc gene silencing pathway in Burkitt's lymphoma. Biochem Biophys Res Commun. 2004;313:552–554.

    Article  CAS  PubMed  Google Scholar 

  18. Yoshinouchi M, Yamada T, Kizaki M, et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol Ther. 2003;8:762–768.

    Article  CAS  PubMed  Google Scholar 

  19. Futami T, Miyagishi M, Seki M, Taira K . Induction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2. Nucleic Acids Res Suppl. 2002; (2):251–252.

    Article  CAS  Google Scholar 

  20. Li K, Lin SY, Brunicardi FC, Seu P . Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Cancer Res. 2003;63:3593–3597.

    CAS  PubMed  Google Scholar 

  21. Chen QR, Zhang L, Stass SA, Mixson AJ . Branched co-polymers of histidine and lysine are efficient carriers of plasmids. Nucleic Acids Res. 2001;29:1334–1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang L, Gasper WJ, Stass SA, Ioffe OB, Davis MA, Mixson AJ . Angiogenic inhibition mediated by a DNAzyme that targets vascular endothelial growth factor receptor 2. Cancer Res. 2002;62:5463–5469.

    CAS  PubMed  Google Scholar 

  23. Lesoon-Wood LA, Kim WH, Kleinman HK, Weintraub BD, Mixson AJ . Systemic gene therapy with p53 reduces growth and metastases of a malignant human breast cancer in nude mice. Hum Gene Ther. 1995;6:395–405.

    Article  CAS  PubMed  Google Scholar 

  24. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS . Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 2002;16:948–958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xia H, Mao Q, Paulson HL, Davidson BL . siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol. 2002;20:1006–1010.

    Article  CAS  PubMed  Google Scholar 

  26. Rudin CM, Marshall JL, Huang CH, et al. Delivery of a liposomal c-raf-1 antisense oligonucleotide by weekly bolus dosing in patients with advanced solid tumors: a phase I study. Clin Cancer Res. 2004;10:7244–7251.

    Article  CAS  PubMed  Google Scholar 

  27. Hood JD, Bednarski M, Frausto R, et al. Tumor regression by targeted gene delivery to the neovasculature. Science. 2002;296:2404–2407.

    Article  CAS  PubMed  Google Scholar 

  28. Scheule RK . The role of CpG motifs in immunostimulation and gene therapy. Adv Drug Deliv Rev. 2000;44:119–134.

    Article  CAS  PubMed  Google Scholar 

  29. Yew NS, Wang KX, Przybylska M, et al. Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid:pDNA complexes. Hum Gene Ther. 1999;10:223–234.

    Article  CAS  PubMed  Google Scholar 

  30. Tousignant JD, Zhao H, Yew NS, Cheng SH, Eastman SJ, Scheule RK . DNA sequences in cationic lipid:pDNA-mediated systemic toxicities. Hum Gene Ther. 2003;14:203–214.

    Article  CAS  PubMed  Google Scholar 

  31. Yew NS, Zhao H, Przybylska M, et al. CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol Ther. 2002;5:731–738.

    Article  CAS  PubMed  Google Scholar 

  32. Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R . Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet. 2003;34:263–264.

    Article  CAS  PubMed  Google Scholar 

  33. Kim DH, Longo M, Han Y, Lundberg P, Cantin E, Rossi JJ . Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol. 2004;22:321–325.

    Article  CAS  PubMed  Google Scholar 

  34. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR . Activation of the interferon system by short-interfering RNAs. Nat Cell Biol. 2003;5:834–839.

    Article  CAS  PubMed  Google Scholar 

  35. Samuel CE . Knockdown by RNAi-proceed with caution. Nat Biotechnol. 2004;22:280–282.

    Article  CAS  PubMed  Google Scholar 

  36. Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 2003;31:2705–2716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Pamela Talalay for her careful reading and helpful suggestions of this manuscrift. This work was supported by the National Institutes of Health (CA101466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archibald James Mixson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leng, Q., Mixson, A. Small interfering RNA targeting Raf-1 inhibits tumor growth in vitro and in vivo. Cancer Gene Ther 12, 682–690 (2005). https://doi.org/10.1038/sj.cgt.7700831

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700831

Keywords

This article is cited by

Search

Quick links