Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Intratumoral coinjection of two adenoviral vectors expressing functional interleukin-18 and inducible protein-10, respectively, synergizes to facilitate regression of established tumors

Abstract

We have constructed two recombinant adenoviral vectors AdVIP-10 and AdVIL-18 expressing the functional chemokine IFN-γ inducible protein (IP)-10 and cytokine interleukin (IL)-18, respectively. Injection of either AdVIP-10 or AdVIL-18 subcutaneously into tumor nodules derived from the J558 murine myeloma cell line delayed some tumor growth but it was not curative in all cases. Coinjection of these two vectors at the same tumor nodule not only significantly suppressed the tumor growth, but also cured established tumors in 8 of 10 (80% tumor free) mice. The latter treatment stimulated T-cell infiltration into tumors in association with tumor necrosis formation, induced a type 1 immune response and induced the activation of J558 tumor–specific cytotoxic T lymphocytes. Moreover, the antitumor activity of IP-10 and IL-18 combined gene therapy was significantly diminished in mice with depletion of either CD4+ (50% tumor free) or CD8+ (40% tumor free) T cells, and completely lost (0% tumor free) in T cell–deficient nude and IFN-γ knockout mice, indicating the critical roles of T cells and IFN-γ in this therapeutical model. Taken together, the findings of this study demonstrate that the combined use of two adenoviral vectors expressing IP-10 and IL-18, respectively, synergize to facilitate regression of established tumors. These observations also suggest the potential use of double-recombinant adenoviral vectors expressing chemokines and immunomodulatory cytokines in cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 5
Figure 4
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Okamura H, Tsutsui H, Komatsu T et al. Cloning of a new cytokine that induces IFN-γ production by T cells Nature 1995 378: 88–91

    Article  CAS  PubMed  Google Scholar 

  2. Dao T, Ohashi K, Kayano T, Kurinoto M, Okamura H . Interferon-γ–inducing factor, a novel cytokine, enhances Fas ligand–mediated cytotoxicity of murine T helper 1 cells Cell Immunol 1996 173: 230–235

    Article  CAS  PubMed  Google Scholar 

  3. Tsutsui H, Nakanishi K, Matsui K et al. IFN-γ–inducing factor upregulates Fas ligand–mediated cytotoxic activity of murine natural killer cell clones J Immunol 1996 157: 3967–3973

    CAS  PubMed  Google Scholar 

  4. Ushio S, Namba M, Okura T et al. Cloning of cDNA for human IFN-γ–inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein J Immunol 1996 156: 4274–4279

    CAS  PubMed  Google Scholar 

  5. Micallef M, Ohtsuki T, Kohno K et al. Interferon-γ–inducing factor enhances T helper 1 cytokine production by stimulated human T cells Eur J Immunol 1996 26: 1647–1651

    Article  CAS  PubMed  Google Scholar 

  6. Kohno K, Kataoka J, Ohtsuki T et al. IFN-γ–inducing factor (IGIF) is a costimulatory factor in the activation of Th1, but not Th2 cells and exerts its effect independently of IL-12 J Immunol 1997 158: 1541–1550

    CAS  PubMed  Google Scholar 

  7. Osaki T, Peron J, Cai Q et al. IFN-γ inducing factor/IL-18 administration mediates IFN-γ and IL-12 independent antitumor effects J Immunol 1998 160: 1724–1729

    Google Scholar 

  8. Tan J, Crucian B, Chang A et al. Interferon-γ–inducing factor elicits antitumor immunity in association with gamma interferon production J Immunother 1998 21: 48–55

    Article  CAS  PubMed  Google Scholar 

  9. Xiang J, Chen Z, Huang H, Moyana T . Regression of engineered myeloma cells secreting interferon-inducing factor is mediated by both CD4, CD8 and NK cells Leuk Res 2001 25: 909–915

    Article  CAS  PubMed  Google Scholar 

  10. Farber J . Mig and IP-10: CXC chemokines that target lymphocytes J Leukocyte Biol 1997 61: 246–257

    Article  CAS  PubMed  Google Scholar 

  11. Jenkins N, Hedrick J, Zlotnik A . The CC chemokine 6Ckine binds the CXC chemokine receptor CXCR3 Proc Natl Acad Sci USA 1998 95: 8205–8210

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cole K, Strick C, Paradis T et al. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3 J Exp Med 1998 187: 2009–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luster A, Leder P . IP-10a C-X-C chemokine elicits a potent thymus-dependent antitumor response in vivo J Exp Med 1993 178: 1057–1065

    Article  CAS  PubMed  Google Scholar 

  14. Angiolilo A, Sgadari C, Tosato G . A role for the interferon-inducible protein 10 in inhibition of angiogenesis by interleukin-12 Ann NY Acad Sci 1996 795: 158–167

    Article  Google Scholar 

  15. Addison C, Braciak T, Ralston R, Muller W, Gauldie J, Graham F . Intratumoral injection of an adenovirus expressing IL-2 induces regression and immunity in a murine breast cancer model Proc Natl Acad Sci USA 1995 92: 8522–8526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ahmed C, Sugarman B, Johnson D et al. In vivo tumor suppression by adenovirus-mediated interferon alpha 2b gene delivery Hum Gene Ther 1999 10: 77–84

    Article  CAS  PubMed  Google Scholar 

  17. Wright P, Braun R, Babiuk L et al. Adenovirus-mediated TNF-α gene transfer induces significant tumor regression in mice Cancer Biother Radiopharm 1999 14: 49–57

    Article  CAS  PubMed  Google Scholar 

  18. Huang H, Li F, Cairns C, Gordon J, Xiang J . Neutrophils and B lymphocytes express the XCR1 receptor and chemotactically respond to lymphotactin Biochem Biophys Res Commun 2001 281: 378–382

    Article  CAS  PubMed  Google Scholar 

  19. Cairns C, Gordon J, Li F, Baca-Estrada M, Moyana T, Xiang J . Lymphotactin expression by engineered myeloma cells drives tumor regression: mediation by CD4 and CD8 T cells and neutrophils expressing XCR1 receptor J Immunol 2001 167: 57–65

    Article  CAS  PubMed  Google Scholar 

  20. Putzer B, Mary H, Muller W, Emtage P, Gauldie J, Graham F . Interleukin 12 and B7-1 costimulatory molecule expressed by an adenovirus vector act synergistically to facilitate tumor regression Proc Natl Acad Sci USA 1997 94: 1088–1094

    Article  Google Scholar 

  21. Emtage P, Wan Y, Hitt M et al. Adenoviral vectors expressing lymphotactin and interleukin 2 or lymphotactin and interleukin 12 synergize to facilitate tumor regression in murine breast cancer models Hum Gene Ther 1999 10: 697–709

    Article  CAS  PubMed  Google Scholar 

  22. Narvaiza I, Mazzolini G, Barajas M et al. Intratumoral coninjection of two adenoviruses, one encoding the chemokine IFN-γ–inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy J Immunol 2000 164: 3112–3122

    Article  CAS  PubMed  Google Scholar 

  23. Paillard F . Cytokine and chemokine: a stimulating couple Hum Gene Ther 1999 10: 695–696

    Article  CAS  PubMed  Google Scholar 

  24. Dilloo D, Bacon K, Holder W et al. Combined chemokine and cytokine gene transfer enhances antitumor immunity Nat Med 1996 2: 1090–1095

    Article  CAS  PubMed  Google Scholar 

  25. Xiang J, Moyana T . Regression of engineered tumor cells secreting cytokines is related to a shift in host cytokine profile from type 2 to type 1 J Cytokine Interferon Res 2000 20: 349–356

    Article  CAS  Google Scholar 

  26. Carter L, Dutton R . Relative perforin- and Fas-mediated lysis in T1 and T2 CD8 effector cell populations J Immunol 1995 155: 1028–1031

    CAS  PubMed  Google Scholar 

  27. Gyorffy S, Palmer K, Poder T, Hitt M, Gauldie J . Combined treatment of a murine breast cancer model with type 5 adenovirus vectors expressing murine angiostatin and IL-12: a role for combined anti-angiogenesis and immunotherapy J Immunol 2001 166: 6212–6217

    Article  CAS  PubMed  Google Scholar 

  28. Khan I, MacLean J, Lee F et al. IP-10 is critical for effector T cell trafficking and host survival in Toxoplasma gondii infection Immunity 2000 12: 483–494

    Article  CAS  PubMed  Google Scholar 

  29. Trinchieri G . Interleukin-12 and its role in the generation of TH1 cells Immunol Today 1993 14: 335–338

    Article  CAS  PubMed  Google Scholar 

  30. Maraskovsky E, Chen W, Shortman K . IL-2 and IFN-γ are two necessary lymphokines in the development of cytolytic T cells J Immunol 1989 143: 1210–1214

    CAS  PubMed  Google Scholar 

  31. Djeu J, Stocks N, Zoon K, Stanton G, Timonen T, Herberman R . Positive self regulation of cytotoxicity in human natural killer cells by production of interferon upon exposure to influenza and herpes viruses J Exp Med 1982 156: 1222–1234

    Article  CAS  PubMed  Google Scholar 

  32. Nathan C, Hibbs J . Role of nitric oxide synthesis in macrophage antimicrobial activity Curr Opin Immunol 1991 3: 65–70

    Article  CAS  PubMed  Google Scholar 

  33. Ruggiero V, Tavernier J, Fiers W, Baglioni C . Induction of the synthesis of tumor necrosis factor receptors by interferon-γ J Immunol 1986 136: 2445–2450

    CAS  PubMed  Google Scholar 

  34. Buchmeier N, Schreiber R . Requirement of endogenous interferon-γ production for resolution of Listeria monocytogenes infection Proc Natl Acad Sci USA 1985 82: 7404–7408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boehm U, Klamp T, Groot M, Howard J . Cellular responses to interferon-γ Annu Rev Immunol 1997 15: 749–795

    Article  CAS  PubMed  Google Scholar 

  36. Zou J, Yamamoto N, Fujii T et al. Systemic administration of rIL-12 induces complete tumor regression and protective immunity: response is correlated with a striking reversal of suppressed IFN-γ production by antitumor T cells Int Immunol 1995 7: 1135–1145

    Article  CAS  PubMed  Google Scholar 

  37. Nastala C, Edington H, McKinney T et al. Recombinant IL-12 administration induces tumor regression in association with IFN-γ production J Immunol 1994 153: 1697–1706

    CAS  PubMed  Google Scholar 

  38. Yu W, Ofawa M, Mu J et al. IL-12–induced tumor regression correlates with in situ activity of IFN-γ produced by tumor-infiltrating cells and its secondary induction of antitumor pathways J Leukocyte Biol 1997 62: 450–457

    Article  CAS  PubMed  Google Scholar 

  39. Ogawa M, Yu W, Umehara K et al. Multiple roles of interferon gamma in the mediation of IL-12–induced tumor regression Cancer Res 1998 58: 2426–2432

    CAS  PubMed  Google Scholar 

  40. Nakajima C, Uekusa Y, Iwasaki M et al. A role of interferon-γ in tumor immunity: T cells with the capacity to reject tumor cells are generated but fail to migrate to tumor sites in IFN-γ–deficient mice Cancer Res 2001 61: 3399–3405

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a research grant (ROP-15151) from the Canadian Institute of Health Research. We thank Dr H Tabel for his useful comments on this manuscript and Mr X Bi for his technical support in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Huang, H., Saxena, A. et al. Intratumoral coinjection of two adenoviral vectors expressing functional interleukin-18 and inducible protein-10, respectively, synergizes to facilitate regression of established tumors. Cancer Gene Ther 9, 533–542 (2002). https://doi.org/10.1038/sj.cgt.7700466

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700466

Keywords

This article is cited by

Search

Quick links