Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Modulation of cyclophosphamide-based cytochrome P 450 gene therapy using liver P450 inhibitors

Abstract

The sensitivity of tumors to cyclophosphamide (CPA) and other anticancer prodrugs can be substantially enhanced by transduction of tumors with a prodrug-activating mammalian cytochrome P 450 (CYP) enzyme in combination with the flavoenzyme P450 reductase. This gene therapy strategy provides for intratumoral prodrug activation, but is also associated with a high level of hepatic prodrug activation, which reduces the extent of intratumoral prodrug activation and contributes to systemic drug toxicity. To address this issue, five P450 inhibitors were tested for their ability to block liver CYP2C-catalyzed CPA activation selectively, i.e., without inhibiting the corresponding intratumoral activation of CPA catalyzed by a transduced CYP2B enzyme. In vitro studies revealed that the P450 inhibitors 1-aminobenzotriazole and DDEP were preferentially inhibitory toward CYP2C-dependent liver microsomal CPA activation, whereas the P450 inhibitor SKF-525A inhibited CYP2C- and CYP2B-dependent CPA activation without P450 form selectivity. By contrast, the P450 inhibitors chloramphenicol and metyrapone preferentially inhibited CYP2B-dependent CPA activation. Rat pharmacokinetic studies confirmed the inhibitory action of these compounds in vivo , with up to a 4-fold decrease in C max and a 7-fold increase in apparent half-life of the activated CPA metabolite, 4-hydroxy-CPA, seen in the case of 1-aminobenzotriazole. Although the rate of hepatic CPA activation could thus be decreased substantially by P450 inhibitor treatment, the net extent of hepatic CPA activation was only modestly decreased, as judged by plasma area-under-the-curve values for 4-hydroxy-CPA. Moreover, P450 inhibitor treatment did not decrease CPA's host toxicity and did not enhance the tumor growth delay response to CPA in rats bearing CYP2B1-transduced gliosarcomas. These findings are discussed in the context of P450-based gene therapy strategies and ongoing efforts to enhance anticancer drug activity by increasing the exposure of P450-expressing tumors to the P450-activated prodrug CPA. Cancer Gene Therapy (2001) 8, 450–458

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harris JD, Gutierrez AA, Hurst HC, Sikora K, Lemoine NR . Gene therapy for cancer using tumour-specific prodrug activation Gene Ther 1994 1: 170–175

    CAS  PubMed  Google Scholar 

  2. Link CJ Jr, Moorman D, Seregina T, Levy JP, Schabold KJ . A phase I trial of in vivo gene therapy with the herpes simplex thymidine kinase/ganciclovir system for the treatment of refractory or recurrent ovarian cancer Hum Gene Ther 1996 7: 1161–1179

    Article  PubMed  Google Scholar 

  3. Rainov NG, Kramm CM, Aboody-Guterman K, et al . Retrovirus-mediated gene therapy of experimental brain neoplasms using the herpes simplex virus-thymidine kinase/ganciclovir paradigm Cancer Gene Ther 1996 3: 99–106

    CAS  PubMed  Google Scholar 

  4. Trinh QT, Austin EA, Murray DM, Knick VC, Huber BE . Enzyme/prodrug gene therapy: comparison of cytosine deaminase/5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell line Cancer Res 1995 55: 4808–4812

    CAS  PubMed  Google Scholar 

  5. Huber BE, Austin EA, Good SS, Knick VC, Tibbels S, Richards CA . In vivo antitumor activity of 5-fluorocytosine on human colorectal carcinoma cells genetically modified to express cytosine deaminase Cancer Res 1993 53: 4619–4626

    CAS  PubMed  Google Scholar 

  6. Wei MX, Tamiya T, Chase M, et al . Experimental tumor therapy in mice using the cyclophosphamide-activating cytochrome P 450 2B1 gene Hum Gene Ther 1994 5: 969–978

    Article  CAS  PubMed  Google Scholar 

  7. Chen L, Waxman DJ . Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P 450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy Cancer Res 1995 55: 581–589

    CAS  PubMed  Google Scholar 

  8. Waxman DJ, Chen L, Hecht JED, Jounaidi Y . Cytochrome P 450-based cancer gene therapy: recent advances and future prospects Drug Metab Rev 1999 31: 503–522

    Article  CAS  PubMed  Google Scholar 

  9. Fleming RA . An overview of cyclophosphamide and ifosfamide pharmacology Pharmacotherapy 1997 17: 146S–154S

    CAS  PubMed  Google Scholar 

  10. Sladek NE . In: Powers G, ed. Anticancer Drugs: Reactive Metabolism and Interactions Oxford, England: Pergamon Press 1994 79–156

  11. Chang TKH, Weber GF, Crespi CL, Waxman DJ . Differential activation of cyclophosphamide and ifosphamide by cytochromes P 450 2B and 3A in human liver microsomes Cancer Res 1993 53: 5629–5637

    CAS  PubMed  Google Scholar 

  12. Roy P, Yu LJ, Crespi CL, Waxman DJ . Development of a substrate-activity based approach to identify the major human liver P450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P450 profiles Drug Metab Dispos 1999 27: 655–666

    CAS  PubMed  Google Scholar 

  13. Chen L, Waxman DJ, Chen D, Kufe DW . Sensitization of human breast cancer cells to cyclophosphamide and ifosfamide by transfer of a liver cytochrome P 450 gene Cancer Res 1996 56: 1331–1340

    CAS  PubMed  Google Scholar 

  14. Jounaidi Y, Hecht JED, Waxman DJ . Retroviral transfer of human cytochrome P 450 genes for oxazaphosphorine-based cancer gene therapy Cancer Res 1998 58: 4391–4401

    CAS  PubMed  Google Scholar 

  15. Chase M, Chung RY, Chiocca EA . An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy Nat Biotechnol 1998 16: 444–448

    Article  CAS  PubMed  Google Scholar 

  16. Pawlik TM, Nakamura H, Yoon SS, et al . Oncolysis of diffuse hepatocellular carcinoma by intravascular administration of a replication-competent, genetically engineered herpesvirus Cancer Res 2000 60: 2790–2795

    CAS  PubMed  Google Scholar 

  17. Lohr M, Muller P, Karle P, et al . Targeted chemotherapy by intratumour injection of encapsulated cells engineered to produce CYP2B1, an ifosfamide activating cytochrome P 450 Gene Ther 1998 5: 1070–1078

    Article  CAS  PubMed  Google Scholar 

  18. Griffiths L, Binley K, Iqball S, et al . The macrophage — a novel system to deliver gene therapy to pathological hypoxia Gene Ther 2000 7: 255–262

    Article  CAS  PubMed  Google Scholar 

  19. Chen L, Yu LJ, Waxman DJ . Potentiation of cytochrome P 450/cyclophosphamide-based cancer gene therapy by coexpression of the P450 reductase gene Cancer Res 1997 57: 4830–4837

    CAS  PubMed  Google Scholar 

  20. LeBlanc GA, Waxman DJ . Interaction of anticancer drugs with hepatic monooxygenase enzymes Drug Metab Rev 1989 20: 395–439

    Article  CAS  Google Scholar 

  21. Jounaidi Y, Waxman DJ . Combination of the bioreductive drug tirapazamine with the chemotherapeutic prodrug cyclophosphamide for P450/P450-reductase–based cancer gene therapy Cancer Res 2000 60: 3761–3769

    CAS  PubMed  Google Scholar 

  22. Rainov NG, Dobberstein KU, Sena-Esteves M, et al . New prodrug activation gene therapy for cancer using cytochrome P 450 4B1 and 2-aminoanthracene/4-ipomeanol Hum Gene Ther 1998 9: 1261–1273

    Article  CAS  PubMed  Google Scholar 

  23. Mohr L, Rainov NG, Mohr UG, Wands JR . Rabbit cytochrome P 450 4B1: a novel prodrug activating gene for pharmacogene therapy of hepatocellular carcinoma Cancer Gene Ther 2000 7: 1008–1014

    Article  CAS  PubMed  Google Scholar 

  24. Pope IM, Poston GJ, Kinsella AR . The role of the bystander effect in suicide gene therapy Eur J Cancer 1997 33: 1005–1016

    Article  CAS  PubMed  Google Scholar 

  25. Huang Z, Raychowdhury MK, Waxman DJ . Impact of liver P450 reductase suppression on cyclophosphamide activation, pharmacokinetics and antitumoral activity in a cytochrome P 450–based cancer gene therapy model Cancer Gene Ther 2000 7: 1034–1042

    Article  CAS  PubMed  Google Scholar 

  26. Brem H, Lawson HC . The development of new brain tumor therapy utilizing the local and sustained delivery of chemotherapeutic agents from biodegradable polymers [editorial; comment] Cancer 1999 86: 197–199

    Article  CAS  PubMed  Google Scholar 

  27. Ichikawa T, Petros WP, Ludeman SM, et al . Intraneoplastic polymer-based delivery of cyclophosphamide for intratumoral bioconversion by a replicating oncolytic viral vector Cancer Res 2001 61: 864–868

    CAS  PubMed  Google Scholar 

  28. Yu L, Waxman DJ . Role of cytochrome P 450 in oxazaphosphorine metabolism. Deactivation via N -dechloroethylation and activation via 4-hydroxylation catalyzed by distinct subsets of rat liver cytochromes P 450 Drug Metab Dispos 1996 24: 1254–1262

    CAS  PubMed  Google Scholar 

  29. Chang TK, Yu L, Goldstein JA, Waxman DJ . Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low- K m catalysts of cyclophosphamide and ifosfamide activation Pharmacogenetics 1997 7: 211–221

    Article  CAS  PubMed  Google Scholar 

  30. Huang Z, Waxman DJ . HPLC fluorescent method to determine chloroacetaldehyde, a neurotoxic metabolite of the anticancer drug ifosfamide, in plasma and in liver microsomal incubations Anal Biochem 1999 273: 117–125

    Article  CAS  PubMed  Google Scholar 

  31. Yu LJ, Drewes P, Gustafsson K, Brain EGC, Hecht JED, Waxman DJ . In vivo modulation of alternative pathways of P450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity J Pharmacol Exp Ther 1999 288: 928–937

    CAS  PubMed  Google Scholar 

  32. Tomayko MM, Reynolds CP . Determination of subcutaneous tumor size in athymic (nude) mice Cancer Chemother Pharmacol 1989 24: 148–154

    Article  CAS  PubMed  Google Scholar 

  33. Lartigau E, Guichard M . The effect of tirapazamine (SR-4233) alone or combined with chemotherapeutic agents on xenografted human tumours Br J Cancer 1996 73: 1480–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clarke L, Waxman DJ . Oxidative metabolism of cyclophosphamide: identification of the hepatic monooxygenase catalysts of drug activation Cancer Res 1989 49: 2344–2350

    CAS  PubMed  Google Scholar 

  35. Halpert J, Balfour C, Miller NE, Morgan ET, Dunbar D, Kaminsky LS . Isozyme selectivity of the inhibition of rat liver cytochromes P 450 by chloramphenicol in vivo Mol Pharmacol 1985 28: 290–296

    CAS  PubMed  Google Scholar 

  36. Waxman DJ, Walsh C . Cytochrome P 450 isozyme 1 from phenobarbital-induced rat liver: purification, characterization, and interactions with metyrapone and cytochrome b 5 Biochemistry 1983 22: 4846–4855

    Article  CAS  PubMed  Google Scholar 

  37. Correia MA, Yao K, Wrighton SA, Waxman DJ, Rettie AE . Differential apoprotein loss of rat liver cytochromes P 450 after their inactivation by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine: a case for distinct proteolytic mechanisms? Arch Biochem Biophys 1992 294: 493–503

    Article  CAS  PubMed  Google Scholar 

  38. Mugford CA, Mortillo M, Mico BA, Tarloff JB . 1-Aminobenzotriazole–induced destruction of hepatic and renal cytochromes P 450 in male Sprague-Dawley rats Fundam Appl Toxicol 1992 19: 43–49

    Article  CAS  PubMed  Google Scholar 

  39. Chang TK, Chen G, Waxman DJ . Modulation of thiotepa antitumor activity in vivo by alteration of liver cytochrome P 450–catalyzed drug metabolism J Pharmacol Exp Ther 1995 274: 270–275

    CAS  PubMed  Google Scholar 

  40. Ono S, Hatanaka T, Hotta H, Satoh T, Gonzalez FJ, Tsutsui M . Specificity of substrate and inhibitor probes for cytochrome P 450s: evaluation of in vitro metabolism using cDNA-expressed human P450s and human liver microsomes Xenobiotica 1996 26: 681–693

    Article  CAS  PubMed  Google Scholar 

  41. Kraner JC, Morgan ET, Halpert JR . Selective suppression of rat hepatic cytochrome P 450 2C11 by chloramphenicol J Pharmacol Exp Ther 1994 270: 1367–1372

    CAS  PubMed  Google Scholar 

  42. Halpert JR, Miller NE, Gorsky LD . On the mechanism of the inactivation of the major phenobarbital-inducible isozyme of rat liver cytochrome P 450 by chloramphenicol J Biol Chem 1985 260: 8397–8403

    CAS  PubMed  Google Scholar 

  43. Meschter CL, Mico BA, Mortillo M, et al . A 13-week toxicologic and pathologic evaluation of prolonged cytochromes P 450 inhibition by 1-aminobenzotriazole in male rats Fundam Appl Toxicol 1994 22: 369–381

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by National Institute of Health Grant CA49248 (to D. J. W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J Waxman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Waxman, D. Modulation of cyclophosphamide-based cytochrome P 450 gene therapy using liver P450 inhibitors. Cancer Gene Ther 8, 450–458 (2001). https://doi.org/10.1038/sj.cgt.7700325

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700325

Keywords

Search

Quick links