Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of iron sulphide grains in protoplanetary disks

Abstract

Sulphur is depleted in cold dense molecular clouds with embedded young stellar objects1, indicating that most of it probably resides in solid grains. Iron sulphide grains are the main sulphur species in cometary dust particles2,3, but there has been no direct evidence for FeS in astronomical sources4, which poses a considerable problem, because sulphur is a cosmically abundant element. Here we report laboratory infrared spectra of FeS grains from primitive meteorites, as well as from pyrrhotite ([Fe, Ni]1-xS) grains in interplanetary dust, which show a broad FeS feature centred at 23.5 micrometres. A similar broad feature is seen in the infrared spectra of young stellar objects, implying that FeS grains are an important but previously unrecognized component of circumstellar dust. The feature had previously been attributed to FeO5,6,7. The observed astronomical line strengths are generally consistent with the depletion of sulphur from the gas phase1, and with the average Galactic sulphur/silicon abundance ratio8. We conclude that the missing sulphur has been found.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infrared spectra of young stars showing a pronounced 23.5-µm feature from iron sulphide grains.
Figure 2: Infrared transmission spectra from iron oxides are compared with iron sulphide standards.
Figure 3: Infrared spectra of sulphide standards and sulphide-rich IDPs compared to ‘23.5-µm’ features in two Herbig stars showing similar peak positions, shapes, and bandwidths.

Similar content being viewed by others

References

  1. Joseph, C. L., Snow, T. E., Seab, C. G. & Crutcher, R. M. Interstellar abundances in dense, moderately reddened lines of sight. I. Observational evidence for density-dependent depletion. Astrophys. J. 309, 771–782 (1986)

    Article  ADS  CAS  Google Scholar 

  2. Schulze, H., Kissel, J. & Jessberger, E. K. in Stardust to Planetesimals (eds Pendleton, T. L. & Tielens, A. G. G. M.) Astron. Soc. Pacific. Conf. Ser. 122, 397–414 (1997)

    Google Scholar 

  3. Dai, Z. R. & Bradley, J. P. Iron-nickel sulfides in anhydrous interplanetary dust particles. Geochim. Cosmochim. Acta 65, 3601–3612 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Palumbo, M. E., Geballe, T. R. & Tielens, A. G. G. M. Solid carbonyl sulfide (OCS) in dense molecular clouds. Astrophys. J. 479, 839–844 (1997)

    Article  ADS  CAS  Google Scholar 

  5. Meeus, G. et al. ISO spectroscopy of circumstellar dust in 14 Herbig Ae/Be systems: Towards an understanding of dust processing. Astron. Astrophys. 365, 476–490 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Waters, L. B. F. M., Molster, F. J. & Waelkens, C. in Solid Interstellar Matter: The ISO Revolution (eds D'Hendecourt, L., Joblin, C & Jones, A.) 219–229 (Springer, Berlin, 1998)

    Google Scholar 

  7. Henning, T., Begemann, B., Mutschke, H. & Dorschner, J. Optical properties of oxide dust grains. Astron. Astrophys. Suppl. 112, 143–149 (1995)

    ADS  CAS  Google Scholar 

  8. Anders, E. & Grevesse, N. Abundances of the elements—Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1988)

    Article  ADS  Google Scholar 

  9. Kessler, M. F. et al. The Infrared Space Observatory (ISO) mission. Astron. Astrophys. 315, L27–L31 (1996)

    ADS  Google Scholar 

  10. Bouwman, J., de Koter, A., van den Ancker, M. E. & Waters, L. B. F. M. The composition of the circumstellar dust around the Herbig Ae stars AB Aur and HD 163296. Astron. Astrophys. 360, 213–226 (2000)

    ADS  CAS  Google Scholar 

  11. van den Ancker, M. E. et al. ISO Spectroscopy of circumstellar dust in the Herbig Ae systems AB Aur and HD 163296. Astron. Astrophys. 357, 325–329 (2000)

    ADS  CAS  Google Scholar 

  12. Lodders, K. & Fegley, B. in Asymptotic Giant Branch Stars (eds LeBertre, T., Lebre, A. & Waelkens, C.) 279–293 (IAU Symposium 191, 1999)

    Google Scholar 

  13. Begemann, B. et al. A laboratory approach to the interstellar sulfide dust problem. Astrophys. J. 423, L71–L74 (1994)

    Article  ADS  CAS  Google Scholar 

  14. Nuth, J. A. et al. Laboratory infrared spectra of predicted condensates in carbon-rich stars. Astrophys. J. 290, L41–L43 (1985)

    Article  ADS  CAS  Google Scholar 

  15. Lennie, A. R. & Vaughan, D. J. Kinetics of the marcasite-pyrite transformation: An infrared spectroscopic study. Am. Mineral. 77, 1166–1177 (1992)

    CAS  Google Scholar 

  16. Hofmeister, A. M., Rosen, L. J. & Speck, A. K. in Thermal Emission Spectroscopy and Analysis of Dust, Disks, and Regoliths (eds Sitko, M. L., Sprague, A. L. & Lynch, D. K.) Astron. Soc. Pacif. Conf. Ser. 196, 291–300 (2000)

    Google Scholar 

  17. Malfait, K. et al. The spectrum of young star HD 100546 observed with the Infrared Space Observatory. Astron. Astrophys. 332, L25–L28 (1998)

    ADS  Google Scholar 

  18. Crovisier, J. et al. The spectrum of comet Hale-Bopp (C/1995 O1) observed with the Infrared Space Observatory at 2.9 astronomical units from the Sun. Science 275, 1904–1907 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Mutschke, H. et al. Steps toward interstellar silicate mineralogy. III. The role of aluminum in circumstellar amorphous silicates. Astron. Astrophys. 333, 188–199 (1998)

    ADS  CAS  Google Scholar 

  20. Draine, B. T. & Lee, H. M. Optical properties of interstellar graphite and silicate grains. Astrophys. J. 285, 89–108 (1984)

    Article  ADS  CAS  Google Scholar 

  21. Savage, B. D. & Sembach, K. R. Interstellar abundances from absorption-line observations with the Hubble Space Telescope. Annu. Rev. Astron. Astrophys. 34, 279–330 (1996)

    Article  ADS  CAS  Google Scholar 

  22. Christoffersen, R., Keller, L. P. & McKay, D. S. Microstructure, chemistry, and origin of grain rims on ilmenite from the lunar soil finest fraction. Meteorit. Planet. Sci. 31, 835–848 (1996)

    Article  ADS  CAS  Google Scholar 

  23. Bradley, J. P. Chemically anomalous preaccretionally irradiated grains in interplanetary dust from comets. Science 265, 925–929 (1994)

    Article  ADS  CAS  Google Scholar 

  24. Keller, L. P., Messenger, S. & Bradley, J. P. Analysis of a deuterium-rich interplanetary dust particle and implications for presolar materials in IDPs. J. Geophys. Res. A 105, 10397–10402 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Keller, L. P., Messenger, S., Miller, M. A. & Thomas, K. L. Nitrogen speciation in a 15N-enriched interplanetary dust particle. Lunar Planet. Sci. 28, 1811–1812 (1997)

    Google Scholar 

Download references

Acknowledgements

We thank L. Miller, L. Carr and G. Williams at the National Synchrotron Light Source at Brookhaven National Laboratory for technical assistance. Much of this work was performed while L.P.K. was a Senior Research Scientist at MVA, Inc. F.J.M. acknowledges support from an NWO Talent Grant. L.B.F.M.W., S.H., A.d.K. and J.B. acknowledge financial support from an NWO Pioneer Grant. We thank A. Li and D. Wooden for comments on the manuscript. This work was supported in part by NASA and ESA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Keller.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, L., Hony, S., Bradley, J. et al. Identification of iron sulphide grains in protoplanetary disks. Nature 417, 148–150 (2002). https://doi.org/10.1038/417148a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/417148a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing