Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dust from supernovae and their progenitors in the solar nebula

Abstract

Pristine stardust grains from the interstellar gas and dust cloud from which our Solar System formed some 4.57 billion years ago are present in small quantities in primitive Solar System materials, such as certain types of meteorite, interplanetary dust particles and cometary matter. As these grains are older than our Solar System, they are known as presolar grains. They can be recognized because they carry large isotopic abundance anomalies that are the result of nucleosynthetic processes in their parent stars, namely, asymptotic giant branch stars, supergiants, supernovae and novae. From astronomical observations and dust-evolution models, it is still not clear to what extent various stellar sources, especially supernovae, contributed dust to the interstellar medium. Since the discovery of presolar grains more than 30 years ago, supernova grains have been considered to be only a minor subpopulation of presolar grains, with relative contributions of 10% for silicates, the most abundant type of presolar stardust grains. Recently conducted studies of presolar grains with improved analysis techniques have changed this view considerably, and suggest that supernovae and their progenitors contributed substantially to the dust inventory of the solar nebula, namely, >30% for silicates and >25% in total if other stardust minerals are considered. Here we review the recent findings from studies of presolar grains and discuss implications for future presolar grain studies, interstellar dust models and the interpretation of astronomical observations of dust in supernova ejecta.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemically separated, micrometre-sized presolar grains from supernova explosions placed on gold foils.
Fig. 2: Abundances of presolar (stardust) grains in the matrix of primitive meteorites.
Fig. 3: NanoSIMS ion images of Mg, Al and Si isotopes and Mg isotopic ratios of a presolar silicate grain.
Fig. 4: Magnesium isotopic systematics of presolar silicate grains.
Fig. 5: C and N isotopic compositions of presolar SiC grains, and their most likely stellar sources.

Similar content being viewed by others

References

  1. Dwek, E. The supernova origin of interstellar dust. Science 313, 178–180 (2006).

    Article  Google Scholar 

  2. Zinner, E. in Meteorites and Cosmochemical Processes Vol. 1 Treatise on Geochemistry Update 2 (ed. Davis, A. M.) 181–213 (Elsevier, 2014).

  3. Nittler, L. R. & Ciesla, F. Astrophysics with extraterrestrial materials. Annu. Rev. Astron. Astrophys. 54, 53–93 (2016).

    Article  ADS  Google Scholar 

  4. Bernatowicz, T. et al. Evidence for interstellar SiC in the Murray carbonaceous meteorite. Nature 330, 728–730 (1987).

    Article  ADS  Google Scholar 

  5. Tang, M. & Anders, E. Isotopic anomalies of Ne, Xe, and C in meteorites. II. Interstellar diamond and SiC: carriers of exotic noble gases. Geochim. Cosmochim. Acta 52, 1235–1244 (1988).

    Article  ADS  Google Scholar 

  6. Amari, S., Anders, E., Virag, A. & Zinner, E. Interstellar graphite in meteorites. Nature 345, 238–240 (1990).

    Article  ADS  Google Scholar 

  7. Nittler, L. R. et al. Silicon nitride from supernovae. Astrophys. J. 453, L25–L28 (1995).

    Article  ADS  Google Scholar 

  8. Hutcheon, I. D., Huss, G. R., Fahey, A. J. & Wasserburg, G. J. Extreme 26Mg and 17O enrichments in an Orgueil corundum: identification of a presolar oxide grain. Astrophys. J. 425, L97–L100 (1994).

    Article  ADS  Google Scholar 

  9. Nittler, L. R., Alexander, C. M. O. D., Gao, X., Walker, R. M. & Zinner, E. K. Interstellar oxide grains from the Tieschitz ordinary chondrite. Nature 370, 443–446 (1994).

    Article  ADS  Google Scholar 

  10. Messenger, S., Keller, L. P., Stadermann, F., Walker, R. M. & Zinner, E. Samples of stars beyond the Solar System: silicate grains in interplanetary dust. Science 300, 105–108 (2003).

    Article  ADS  Google Scholar 

  11. Floss, C. & Haenecour, P. Presolar silicate grains: abundances, isotopic and elemental compositions, and the effects of secondary processing. Geochem. J. 50, 3–15 (2016).

    Article  ADS  Google Scholar 

  12. Bose, M., Floss, C. & Stadermann, F. J. An investigation into the origin of Fe-rich presolar silicates in Acfer 094. Astrophys. J. 714, 1624–1636 (2010).

    Article  ADS  Google Scholar 

  13. Nguyen, A., Nittler, L. R., Stadermann, F., Stroud, R. & Alexander, C. M. O. D. Coordinated analyses of presolar grains in the Allan Hills 77307 and Queen Elizabeth Range 99177 meteorites. Astrophys. J. 719, 166–189 (2010).

    Article  ADS  Google Scholar 

  14. Vollmer, C., Hoppe, P., Stadermann, F. J., Floss, C. & Brenker, F. NanoSIMS analysis and Auger electron spectroscopy of silicate and oxide stardust from the carbonaceous chondrite Acfer 094. Geochim. Cosmochim. Acta 73, 7127–7149 (2009).

    Article  ADS  Google Scholar 

  15. Nagashima, K., Krot, A. N. & Yurimoto, H. Stardust silicates from primitive meteorites. Nature 428, 921–924 (2004).

    Article  ADS  Google Scholar 

  16. Nguyen, A. N. & Zinner, E. Discovery of ancient silicate stardust in a meteorite. Science 303, 1496–1499 (2004).

    Article  ADS  Google Scholar 

  17. Hoppe, P., Cohen, S. & Meibom, A. NanoSIMS: technical aspects and applications in cosmochemistry and biological geochemistry. Geostand. Geoanal. Res. 37, 111–154 (2013).

    Article  Google Scholar 

  18. Hoppe, P., Leitner, J. & Kodolányi, J. New insights into the Galactic chemical evolution of magnesium and silicon isotopes from studies of silicate stardust. Astrophys. J. 869, 47 (2018).

    Article  ADS  Google Scholar 

  19. Nittler, L. R., Alexander, C. M. O. D., Liu, N. & Wang, J. Extremely 54Cr- and 50Ti-rich presolar oxide grains in a primitive meteorite: formation in rare types of supernovae and implications for the astrophysical context of Solar System birth. Astrophys. J. Lett. 856, L24 (2018).

    Article  ADS  Google Scholar 

  20. Leitner, J. et al. The presolar grain inventory of fine-grained chondrule rims in the Mighei-type (CM) chondrites. Meteorit. Planet. Sci. 55, 1176–1206 (2020).

    Article  ADS  Google Scholar 

  21. Huss, G. R. & Lewis, R. S. Presolar diamond, SiC, and graphite in primitive chondrites: abundances as a function of meteorite class and petrologic type. Geochim. Cosmochim. Acta 59, 115–160 (1995).

    Article  ADS  Google Scholar 

  22. Anders, E. & Zinner, E. Interstellar grains in primitive meteorites: diamond, silicon carbide, and graphite. Meteoritics 28, 490–514 (1989).

    Article  ADS  Google Scholar 

  23. Clayton, D. D. Origin of heavy xenon in meteoritic diamonds. Astrophys. J. 340, 613–619 (1989).

    Article  ADS  Google Scholar 

  24. Richter, S., Ott, U. & Begemann, F. Tellurium in pre-solar diamonds as an indicator for rapid separation of supernova ejecta. Nature 391, 261–263 (1998).

    Article  ADS  Google Scholar 

  25. Russell, S. S., Arden, J. W. & Pillinger, C. T. A carbon and nitrogen isotope study of diamond from primitive chondrites. Meteorit. Planet. Sci. 31, 343–355 (1996).

    Article  ADS  Google Scholar 

  26. Stroud, R. M., Chisholm, M. F., Heck, P. R., Alexander, C. M. O. D. & Nittler, L. R. Supernova shock-wave-induced co-formation of glassy carbon and nanodiamond. Astrophys. J. 738, L27 (2011).

    Article  ADS  Google Scholar 

  27. Nittler, L. R., Alexander, C. M. O. D., Gao, X., Walker, R. M. & Zinner, E. Stellar sapphires: the properties and origins of presolar Al2O3 in meteorites. Astrophys. J. 483, 475–495 (1997).

    Article  ADS  Google Scholar 

  28. Nittler, L. R. et al. Aluminum-, calcium- and titanium-rich oxide stardust in ordinary chondrite meteorites. Astrophys. J. 682, 1450–1478 (2008).

    Article  ADS  Google Scholar 

  29. Nittler, L. R. On the mass and metallicity distributions of the parent AGB stars of O-rich presolar dust. Publ. Astron. Soc. Aust. 26, 271–277 (2009).

    Article  ADS  Google Scholar 

  30. Hoppe, P., Leitner, J., Kodolányi, J. & Vollmer, C. Isotope systematics of presolar silicate grains: new insights from magnesium and silicon. Astrophys. J. 913, 10 (2021).

    Article  ADS  Google Scholar 

  31. Leitner, J. & Hoppe, P. A new population of dust from stellar explosions among meteoritic stardust. Nat. Astron. 3, 725–729 (2019).

    Article  ADS  Google Scholar 

  32. Verdier-Paoletti, M. J., Nittler, L. R. & Wang, J. High-resolution measurements of Mg, Si, Fe and Ni isotopes of O-rich presolar grains. In 82nd Annual Meeting of The Meteoritical Society 6433 (Lunar and Planetary Institute, 2019).

  33. Pignatari, M. et al. Carbon-rich presolar grains from massive stars: subsolar 12C/13C and 14N/15N ratios and the mystery of 15N. Astrophys. J. 808, L43 (2015).

    Article  ADS  Google Scholar 

  34. Kobayashi, C., Karakas, A. I. & Umeda, H. The evolution of isotope ratios in the Milky Way Galaxy. Mon. Not. R. Astron. Soc. 414, 3231–3250 (2011).

    Article  ADS  Google Scholar 

  35. Timmes, F. X., Woosley, S. E. & Weaver, T. A. Galactic chemical evolution: hydrogen through zinc. Astrophys. J. Suppl. Ser. 98, 617–658 (1995).

    Article  ADS  Google Scholar 

  36. Nollett, K. M., Busso, M. & Wasserburg, G. J. Cool bottom processes on the thermally pulsing asymptotic giant branch and the isotopic composition of circumstellar dust grains. Astrophys. J. 582, 1036–1058 (2003).

    Article  ADS  Google Scholar 

  37. Palmerini, S., La Cognata, M., Cristallo, S. & Busso, M. Deep mixing in evolved stars. I. The effect of reaction rate revisions from C to Al. Astrophys. J. 729, 3 (2011).

    Article  ADS  Google Scholar 

  38. Lugaro, M. et al. Origin of meteoritic stardust unveiled by a revised proton-capture rate of 17O. Nat. Astron. 1, 0027 (2017).

    Article  Google Scholar 

  39. Nittler, L. R., Stroud, R. M., Alexander, C. M. O. D. & Howell, K. Presolar grains in primitive ungrouped carbonaceous chondrite Northwest Africa 5958. Meteorit. Planet. Sci. 55, 1160–1175 (2019).

    Article  ADS  Google Scholar 

  40. Rauscher, T., Heger, A., Hoffman, R. D. & Woosley, S. E. Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys. J. 576, 323–348 (2002).

    Article  ADS  Google Scholar 

  41. Hynes, K. M. & Gyngard, F. The Presolar Grain Database: http://presolar.wustl.edu/~pgd. In Proc. 40th Lunar and Planetary Science Conference 1198 (Lunar and Planetary Institute, 2009).

  42. Hoppe, P., Leitner, J. & Kodolanyi, J. New constraints on the abundances of silicate and oxide stardust from supernovae in the Acfer 094 meteorite. Astrophys. J. 808, L9 (2015).

    Article  ADS  Google Scholar 

  43. Liu, N., Dauphas, N., Cristallo, S., Palmerini, S. & Busso, M. Oxygen and aluminum-magnesium isotopic systematics of presolar nanospinel grains from CI chondrite Orgueil. Geochim. Cosmochim. Acta 319, 296–317 (2021).

    Article  ADS  Google Scholar 

  44. Zinner, E. et al. Oxygen, magnesium and chromium isotopic ratios of presolar spinel grains. Geochim. Cosmochim. Acta 69, 4149–4165 (2005).

    Article  ADS  Google Scholar 

  45. Dauphas, N. et al. Neutron-rich chromium isotope anomalies in supernova ejecta. Astrophys. J. 720, 1577–1591 (2010).

    Article  ADS  Google Scholar 

  46. Qin, L. et al. Extreme 54Cr-rich nano-oxides in the CI chondrite Orgueil—implication for a late supernova injection into the Solar System. Geochim. Cosmochim. Acta 75, 629–644 (2011).

    Article  ADS  Google Scholar 

  47. Bose, M., Floss, C., Stadermann, F. J., Stroud, R. M. & Speck, A. K. Circumstellar and interstellar material in the CO3 chondrite ALHA77307: an isotopic and elemental investigation. Geochim. Cosmochim. Acta 93, 77–101 (2012).

    Article  ADS  Google Scholar 

  48. Lugaro, M. et al. Isotopic compositions of strontium, zirconium, molybdenum, and barium in single presolar SiC grains and asymptotic giant branch stars. Astrophys. J. 593, 486–508 (2003).

    Article  ADS  Google Scholar 

  49. Lugaro, M., Karakas, A. I., Pető, M. & Plachy, E. Do meteoritic silicon carbide grains originate from asymptotic giant branch stars of super-solar metallicity? Geochim. Cosmochim. Acta 221, 6–20 (2018).

    Article  ADS  Google Scholar 

  50. Zinner, E. et al. Silicon and carbon isotopic ratios in AGB stars: SiC grain data, models, and the Galactic evolution of the Si isotopes. Astrophys. J. 650, 350–373 (2006).

    Article  ADS  Google Scholar 

  51. Amari, S. et al. Presolar SiC grains of type Y: origin from low-metallicity AGB stars. Astrophys. J. 546, 248–266 (2001).

    Article  ADS  Google Scholar 

  52. Hoppe, P. et al. Meteoritic silicon carbide grains with unusual Si-isotopic compositions: evidence for an origin in low-mass metallicity asymptotic giant branch stars. Astrophys. J. 487, L101–L104 (1997).

    Article  ADS  Google Scholar 

  53. Amari, S., Hoppe, P., Zinner, E. & Lewis, R. S. Interstellar SiC with unusual isotopic compositions: grains from a supernova? Astrophys. J. 394, L43–L46 (1992).

    Article  ADS  Google Scholar 

  54. Amari, S., Gao, X., Nittler, L. R. & Zinner, E. Presolar grains from novae. Astrophys. J. 551, 1065–1072 (2001).

    Article  ADS  Google Scholar 

  55. José, J. & Hernanz, M. The origin of presolar nova grains. Meteorit. Planet. Sci. 42, 1135–1143 (2007).

    Article  ADS  Google Scholar 

  56. Hoppe, P., Pignatari, M., Kodolányi, J., Gröner, E. & Amari, S. NanoSIMS isotope studies of rare types of presolar silicon carbide grains from the Murchison meteorite: implications for supernova models and the role of 14C. Geochim. Cosmochim. Acta 221, 182–199 (2018).

    Article  ADS  Google Scholar 

  57. Liu, N., Nittler, L. R., Pignatari, M., Alexander, C. M. O. D. & Wang, J. Stellar origin of 15N-rich presolar SiC grains of type AB: supernovae with explosive hydrogen burning. Astrophys. J. 842, L1 (2017).

    Article  ADS  Google Scholar 

  58. Nittler, L. R. & Hoppe, P. Are presolar silicon carbide grains from novae actually from supernovae? Astrophys. J. 631, L89–L92 (2005).

    Article  ADS  Google Scholar 

  59. Liu, N. et al. Stellar origins of extremely 13C- and 15N-enriched presolar SiC grains: novae or supernovae? Astrophys. J. 820, 140 (2016).

    Article  ADS  Google Scholar 

  60. Schulte, J., Bose, M., Young, P. A. & Vance, G. S. Three-dimensional supernova models provide new insights into the origins of stardust. Astrophys. J. 908, 38 (2021).

    Article  ADS  Google Scholar 

  61. Amari, S., Nittler, L. R., Zinner, E., Lodders, K. & Lewis, R. S. Presolar SiC grains of type A and B: their isotopic compositions and stellar origins. Astrophys. J. 559, 463–483 (2001).

    Article  ADS  Google Scholar 

  62. Stephan, T. et al. The Presolar Grain Database reloaded—silicon carbide. In Proc. 51st Lunar and Planetary Science Conference 2140 (Lunar and Planetary Institute, 2020).

  63. Liu, N. et al. J-type carbon stars: a dominant source of 14N-rich presolar SiC grains of type AB. Astrophys. J. 844, L12 (2017).

    Article  ADS  Google Scholar 

  64. Hoppe, P., Stancliffe, R. J., Pignatari, M. & Amari, S. Isotopic signatures of supernova nucleosynthesis in presolar silicon carbide grains of type AB with supersolar 14N/15N ratios. Astrophys. J. 887, 8 (2019).

    Article  ADS  Google Scholar 

  65. Amari, S., Zinner, E. & Gallino, R. Presolar graphite from the Murchison meteorite: an isotopic study. Geochim. Cosmochim. Acta 133, 479–522 (2014).

    Article  ADS  Google Scholar 

  66. Jadhav, M. et al. Multi-element isotopic analyses of presolar graphite grains from Orgueil. Geochim. Cosmochim. Acta 113, 193–224 (2013).

    Article  ADS  Google Scholar 

  67. Travaglio, C. et al. Low-density graphite grains and mixing in type II supernovae. Astrophys. J. 510, 325–354 (1999).

    Article  ADS  Google Scholar 

  68. Nittler, L. R., Amari, S., Zinner, E., Woosley, S. E. & Lewis, R. S. Extinct 44Ti in presolar graphite and SiC: proof of a supernova origin. Astrophys. J. 462, L31–L34 (1996).

    Article  ADS  Google Scholar 

  69. Dauphas, N. & Chaussidon, M. A perspective from extinct radionuclides on a young stellar object: the Sun and its accretion disk. Ann. Rev. Earth Planet. Sci. 39, 351–386 (2011).

    Article  ADS  Google Scholar 

  70. Zhukovska, S., Gail, H.-P. & Trieloff, M. Evolution of interstellar dust and stardust in the solar neighbourhood. Astron. Astrophys. 479, 453–480 (2008).

    Article  ADS  Google Scholar 

  71. Slavin, J. D., Dwek, E. & Jones, A. P. Destruction of interstellar dust in evolving supernova remnant shock waves. Astrophys. J. 803, 7 (2015).

    Article  ADS  Google Scholar 

  72. Hoppe, P., Leitner, J. & Kodolanyi, J. The stardust abundance in the local interstellar cloud at the birth of the Solar System. Nat. Astron. 1, 617–620 (2017).

    Article  ADS  Google Scholar 

  73. Heck, P. R. et al. Lifetimes of interstellar dust from cosmic ray exposure ages of presolar silicon carbide. Proc. Natl Acad. Sci. USA 117, 1884–1889 (2020).

    Article  ADS  Google Scholar 

  74. Fesen, R. A. et al. The expansion asymmetry and age of the Cassiopeia A supernova remnant. Astrophys. J. 645, 283–292 (2006).

    Article  ADS  Google Scholar 

  75. De Looze, I. et al. The dust mass in Cassiopeia A from a spatially resolved Herschel analysis. Mon. Not. R. Astron. Soc. 465, 3309–3342 (2016).

    Article  Google Scholar 

  76. Todini, P. & Ferrara, A. Dust formation in primordial type II supernovae. Mon. Not. R. Astron. Soc. 325, 726–736 (2001).

    Article  ADS  Google Scholar 

  77. Jones, A. P., Tielen, A. G. G. M. & Hollenbach, D. J. Grain shattering in shocks: the interstellar grain size distribution. Astrophys. J. 469, 740–764 (1996).

    Article  ADS  Google Scholar 

  78. Kirchschlager, F. et al. Dust survival rates in clumps passing through the Cas A reverse shock—I. Results for a range of clump densities. Mon. Not. R. Astron. Soc. 489, 4465–4496 (2019).

    Article  ADS  Google Scholar 

  79. Silvia, D. W., Smith, B. D. & Michael Shull, J. Numerical simulations of supernova dust destruction. I. Cloud-crushing and post-processed grain sputtering. Astrophys. J. 715, 1575–1590 (2010).

    Article  ADS  Google Scholar 

  80. Bocchio, M. et al. Dust grains from the heart of supernovae. Astron. Astrophys. 587, A157 (2016).

    Article  Google Scholar 

  81. Micelotta, E. R., Dwek, E. & Slavin, J. D. Dust destruction by the reverse shock in the Cassiopeia A supernova remnant. Astron. Astrophys. 590, A65 (2016).

    Article  ADS  Google Scholar 

  82. Gail, H.-P., Zhukovska, S. V., Hoppe, P. & Trieloff, M. Stardust from asymptotic giant branch stars. Astrophys. J. 698, 1136–1154 (2009).

    Article  ADS  Google Scholar 

  83. Dwek, E. The evolution of the elemental abundances in the gas and dust phases of the Galaxy. Astrophys. J. 501, 643–665 (1998).

    Article  ADS  Google Scholar 

  84. Bocchio, M., Jones, A. P. & Slavin, J. D. A re-evaluation of dust processing in supernova shock waves. Astron. Astrophys. 570, A32 (2014).

    Article  ADS  Google Scholar 

  85. Zhukovska, S., Dobbs, C., Jenkins, E. B. & Klessen, R. S. Modeling dust evolution in galaxies with a multiphase, inhomogeneous ISM. Astrophys. J. 831, 147 (2016).

    Article  ADS  Google Scholar 

  86. Jones, A. P. & Nuth, J. A. Dust destruction in the ISM: a re-evaluation of dust lifetimes. Astron. Astrophys. 530, A44 (2011).

    Article  ADS  Google Scholar 

  87. Galliano, F. et al. A nearby galaxy perspective on dust evolution. Astron. Astrophys. 649, A18 (2021).

    Article  Google Scholar 

  88. De Looze, I. et al. JINGLE—IV. Dust, H i gas, and metal scaling laws in the local Universe. Mon. Not. R. Astron. Soc. 496, 3668–3687 (2020).

    Article  ADS  Google Scholar 

  89. Jones, A. P. et al. The evolution of amorphous hydrocarbons in the ISM: dust modelling from a new vantage point. Astron. Astrophys. 558, A62 (2013).

    Article  Google Scholar 

  90. Jones, A. P., Köhler, M., Ysard, N., Bocchio, M. & Verstraete, L. The global dust modelling framework THEMIS. Astron. Astrophys. 602, A46 (2017).

    Article  ADS  Google Scholar 

  91. Stephan, T. et al. CHILI—the Chicago Instrument for Laser Ionization—a new tool for isotope measurements in cosmochemistry. Int. J. Mass Spectrom. 407, 1–15 (2016).

    Article  Google Scholar 

  92. Stephan, T. et al. Strontium and barium isotopes in presolar silicon carbide grains measured with CHILI—two types of X grains. Geochim. Cosmochim. Acta 221, 109–126 (2018).

    Article  ADS  Google Scholar 

  93. Zega, T. et al. A transmission electron microscopy study of presolar hibonite. Astrophys. J. 730, 83 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the participants of the online workshop ‘Supernovae and Interstellar Dust’, organized by NORDITA on 12–14 April 2021, for inspiring this Review. This work was supported by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

All authors meet the journal’s authorship criteria and participated in the discussion and design of the manuscript. P.H. wrote most of the manuscript and coordinated co-author contributions. A.P.J. contributed to the writing of the section on astronomical observations and models. J.L., J.K., S.B. and A.P.J. reviewed and substantially revised the manuscript.

Corresponding author

Correspondence to Peter Hoppe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Maitrayee Bose and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoppe, P., Leitner, J., Kodolányi, J. et al. Dust from supernovae and their progenitors in the solar nebula. Nat Astron 6, 1027–1034 (2022). https://doi.org/10.1038/s41550-022-01737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01737-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing