Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tissue ablation by a free-electron laser tuned to the amide II band

Abstract

EFFORTS to ablate soft tissue with conventional lasers have been limited by collateral damage and by concern over potential photochemical effects1–5. Motivated by the thermal-confinement model6, past infrared investigations targeted the OH-stretch mode of water with fast pulses from lasers emitting near 3,000 nm (refs 1, 7–9). What does a free-electron laser offer for the investigation of tissue ablation? Operating at non-photochemical single-photon energies, these infrared sources can produce trains of picosecond pulses tunable to the vibrational modes of proteins, lipids and/or water. We report here that targeting free-electron laser radiation to the amide II band of proteins leads to tissue ablation characterized by minimal collateral damage while maintaining a substantial ablation rate. To account for these observations we propose a novel ablation mechanism based on compromising tissue through resonant denaturation of structural proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Srinivasan, R. Science 234, 559–565 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Alfano, R. R. & Doukas, A. G. (eds) IEEE J. quant. Electron. QE-20, 1342–1532 (1984).

  3. Puliafito, C. A., Steinert, R. F. & Deutsch, T. F. Ophthalmology 92 (6), 741–748 (1985).

    Article  CAS  Google Scholar 

  4. Robertson J. H. & Clark, W. C. (eds) Lasers in Neurosurgery (Kluwer Academic, Dordrecht, 1988).

    Google Scholar 

  5. Anderson, R. R. & Parrish, J. A. Science 220, 524–527 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Wolbarsht, M. L. IEEE J. quant. Electron. QE-20, 1427–1432 (1984).

  7. Zysset, B., Fujimoto, J. G., Puliafito, C. A., Birngruber, R. & Deutsch, T. F. Lasers Surg. Med. 9, 193–204 (1989).

    Article  CAS  Google Scholar 

  8. Walsh, J. T. Jr, Flotte, T. J. & Deutsch, T. F. Lasers Surg. in Med. 9, 314–326 (1989).

    Article  Google Scholar 

  9. Stern, D., Puliafito, C. A., Dobi, E. T. & Reidy, W. T. Ophthalmology 95 (10), 1434–1441 (1988).

    Article  CAS  Google Scholar 

  10. Madey, J. M. J. J. appl. Phys. 42, 1906–1930 (1971).

    Article  ADS  CAS  Google Scholar 

  11. Brau, C. A. Science 239, 1115–1121 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Dlott, D. & Fayer, M. J. Opt. Soc. Am. B 6 (5), 977–994 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Edwards, G. S., Johnson, B., Kozub, J., Tribble, J. & Wagner, K. Opt. Engng 32 (2), 314–319 (1993).

    Article  ADS  Google Scholar 

  14. Austin, R. H., Roberson, M. W. & Mansky, P. Phys. Rev. Lett. 62, 1912–1915 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Fann, W. et al. Phys. Rev. Lett. 64, 607–610 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Zimdars, D. et al. Phys. Rev. Lett. 70, 2718–2721 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Tuncel, E. et al. Phys. Rev. Lett. 70, 4146–4149 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Brau, C. A. Nucl. Instrum. Meth. A319, 47–50 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Graener, H., Seifert, G. & Laubereau, A. Phys. Rev. Lett. 66, 2092–2095 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Weissbluth, M. Photon-Atom Interactions Ch. 7, p. 376 (Academic, Boston, 1989).

    Google Scholar 

  21. Brewer, R. G. & Rieckhoff, K. E. Phys. Rev. Lett. 13, 334–336 (1964).

    Article  ADS  Google Scholar 

  22. Berman, E. R. Biochemistry of the Eye (Plenum, New York, 1991).

    Book  Google Scholar 

  23. Liebman, S. A. & Levy, E. J. (eds) Pyrolysis and GC in Polymer Analysis (Dekker, New York, 1984).

  24. Joly, M. A Physico-Chemical Approach to the Denaturation of Proteins, 153 (Academic, London, 1965).

    Google Scholar 

  25. Flory, P. J. Statistical Mechanics of Chain Molecules Ch. 7. Section 6 (Hanser, New York, 1969).

    Book  Google Scholar 

  26. Privalov, P. R. et al. J. molec. Biol. 205, 737–750 (1989).

    Article  CAS  Google Scholar 

  27. McClain, P. E. & Wiley, E. R. J. biol. Chem. 247 (3), 692–697 (1972).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, G., Logan, R., Copeland, M. et al. Tissue ablation by a free-electron laser tuned to the amide II band. Nature 371, 416–419 (1994). https://doi.org/10.1038/371416a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371416a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing