Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gigantic optical nonlinearity in one-dimensional Mott–Hubbard insulators

Abstract

The realization of all-optical switching, modulating and computing devices is an important goal in modern optical technology. Nonlinear optical materials with large third-order nonlinear susceptibilities (χ(3)) are indispensable for such devices, because the magnitude of this quantity dominates the device performance. A key strategy in the development of new materials with large nonlinear susceptibilities is the exploration of quasi-one-dimensional systems1,2, or ‘quantum wires’—the quantum confinement of electron–hole motion in one-dimensional space can enhance χ(3). Two types of chemically synthesized quantum wires have been extensively studied: the band insulators of silicon polymers, and Peierls insulators of π-conjugated polymers and platinum halides. In these systems, χ(3) values of 10-12 to 10-7 e.s.u. (electrostatic system of units) have been reported3,4,5,6,7. Here we demonstrate an anomalous enhancement of the third-order nonlinear susceptibility in a different category of quantum wires: one-dimensional Mott insulators of 3 d transition-metal oxides and halides. By analysing the electroreflectance spectra of these compounds, we measure χ(3) values in the range 10-8 to 10-5 e.s.u. The anomalous enhancement results from a large dipole moment between the lowest two excited states of these systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal and electronic structures of the 1D Mott insulators.
Figure 2: ε2 and Δε2 spectra of Sr 2CuO3, and [Ni(chxn)2Br]Br2 and isostructural Ni–Cl compounds.
Figure 3: ε2 and Imχ(3)(-ω;0,0,ω) spectra at 77 K of [Ni(chxn)2Br]Br2.
Figure 4: Comparison of the maximum values of |Imχ(3)(-ω;0,0,ω)| and transition dipole moments in various 1D materials.

Similar content being viewed by others

References

  1. Auston, D. H. et al. Research on nonlinear optical materials: an assessment. Appl. Opt. 26, 211–234 ( 1987).

    Article  ADS  CAS  Google Scholar 

  2. Sauteret, C. et al. Optical nonlinearities in one-dimensional-conjugated polymer crystals. Phys. Rev. Lett. 36, 956– 959 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Hasegawa, T. et al. Nonlinear optical spectroscopy on one-dimensional excitons in silicon polymer, polysilane. Phys. Rev. Lett. 69 , 668–671 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Fann, W.-S. et al. Spectrum of χ(3)(-3ω;ω,ω,ω) in polyacetylene: an application of the free-electron laser in nonlinear optical spectroscopy. Phys. Rev. Lett. 62, 1492– 1495 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Iwasa, Y. et al. Nonlinear optical study of quasi-one-dimensional platinum complexes: Two-photon excitonic resonance effect. Appl. Phys. Lett. 59, 2219–2221 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Bubeck, C. et al. Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G. Chem. Phys. 154, 343–348 (1991).

    Article  CAS  Google Scholar 

  7. Halvorson, C. et al. Conjugated polymers with degenerate ground state. The route to high performance third-order nonlinear optical response. Chem. Phys. Lett. 200, 364–368 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 ( 1998).

    Article  ADS  CAS  Google Scholar 

  9. Motoyama, N., Eisaki, H. & Uchida, S. Magnetic susceptibility of ideal spin 1/2 Heisenberg antiferromagnetic chain systems, Sr2CuO3 and SrCuO 2. Phys. Rev. Lett. 76, 3212– 3215 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Toriumi, K. et al. Synthesis and crystal structure of a novel one-dimensional halogen-bridged NiIII-X-NiIII compounds, {[Ni(R,R-chxn)2Br]Br2}∞. J. Am. Chem. Soc. 111, 2341– 2342 (1989).

    Article  CAS  Google Scholar 

  11. Okamoto, H., Toriumi, K., Mitani, T. & Yamashita, M. Optical and magnetic properties of the halogen-bridged metal complexes modified by hydrogen bondings: {M(1R,2R-cyclohexanediamine)2Br}Br 2 (M = Pt, Pd, and Ni). Phys. Rev. B 42 , 10381–10387 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Okamoto, H. et al. Electronic structure of the quasi-one-dimensional halogen-bridged Ni complexes [Ni(chxn)2X]X2 (X = Cl, Br) and related Ni compounds. Phys. Rev. B 54 , 8438–8445 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Seraphin, B. O. Optical field effect in silicon. Phys. Rev. 140, A1716–A1725 (1965).

    Article  ADS  Google Scholar 

  14. Cardona, M. Modulation Spectroscopy (Academic, New York, 1969).

    Google Scholar 

  15. Tokura, Y. et al. Optical spectra in polydiacetylene crystals substituted with fluorobenzenes. J. Chem. Phys. 85, 99– 104 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Butcher, P. N. & Cotter, D. The Elements of Nonlinear Optics (Cambridge University Press, 1990).

    Book  Google Scholar 

  17. Aspnes, D. E. & Rowe, J. E. Resonant nonlinear optical susceptibility: electroreflectance in the low-field limit. Phys. Rev. B 5, 4022–4030 (1972).

    Article  ADS  Google Scholar 

  18. Stegeman, G. I. & Wright, E. M. All-optical waveguide switching. Opt. Quantum Electron. 22, 95–122 (1990).

    Article  CAS  Google Scholar 

  19. Stegeman, G. I. & Torruellas, W. E. Nonlinear materials for information processing and communications. Phil. Trans. R. Soc. Lond. A 354, 745–756 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Suzuura, H. et al. Singularities in optical spectra of quantum spin chains. Phys. Rev. Lett. 76, 2579–2582 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Roessler, D. M. Kramers-Kronig analysis of reflection data. Br. J. Appl. Phys. 16, 1119–1123 ( 1965).

    Article  ADS  CAS  Google Scholar 

  22. Wada, Y. & Yamashita, M. Electric-field effects on the charge-transfer excitation in quasi-one-dimensional halogen-bridged mixed-valence Pt complexes: [Pt(ethylenediamine)2] [Pt(ethylenediamine) 2X2](ClO4)4 (X = Cl, Br, I). Phys. Rev. B 42, 7398– 7404 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Phillips, S. D. et al. Electroabsorption of polyacetylene. Phys. Rev. B 40, 9751–9759 ( 1989).

    Article  ADS  CAS  Google Scholar 

  24. Hasegawa, T. et al. Analysis of excitonic resonant effect in the third-order nonlinear optical susceptibility of polydiacetylene films. Synth. Met. 43, 3151–3156 (1991).

    Article  CAS  Google Scholar 

  25. Gelsen, O. M. et al. Spectroscopic investigation of the electro-optic nonlinearity in poly(2,5-thienylene vinylene). J. Appl. Phys. 71 , 1064–1066 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant-in-aid from the Ministry of Education, Science, Sports, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Okamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishida, H., Matsuzaki, H., Okamoto, H. et al. Gigantic optical nonlinearity in one-dimensional Mott–Hubbard insulators . Nature 405, 929–932 (2000). https://doi.org/10.1038/35016036

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016036

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing