Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anisotropic structures at the base of the Earth's mantle

Abstract

The D″ shell at the base of the Earth's mantle is thought to be a thermal and compositional boundary layer where vigorous dynamical processes are taking place1,2,3,4. An important property of D″ is its seismic anisotropy, expressed as different velocities for horizontally and vertically polarized shear waves that have been diffracted or reflected at the core–mantle boundary5,6. The nature of this anisotropy has been the subject of debate7,8,9,10,11. Here we present an analysis of various seismic phases, generated in the Kermadec–Fiji–Tonga zone and recorded at stations in North America, which reveal a region at the base of the mantle beneath the southwest Pacific Ocean where horizontally propagating vertically polarized waves are slower (by at least 10 per cent) than horizontally polarized waves. This observed anisotropy is an order of magnitude larger than that previously thought to exist in the lower mantle, and corresponds to lateral variations in horizontally polarized shear-wave velocity which are also of about 10 per cent. We speculate that this anisotropy may be the result of the mixing and shearing of strongly heterogeneous material in the boundary layer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometry of the data set considered.
Figure 2: Residuals of SHdiff−SKS and SHdiff − SKKS differential travel times with respect to those for PREM12, for HRV/WFM, RSON and CCM, and corresponding regression lines.
Figure 3: SKKS−SKS residuals for all paths in EPS Fig. 1b.
Figure 4: Delays of SVdiff with respect to SHdiff as a function of epicentral distance for stations HRV/WFM, RSON and CCM.

Similar content being viewed by others

References

  1. Doornbos, D. J., Spiliopoulos, S. & Stacey, F. D. Seismological properties of D″ and the structure of a thermal boundary layer. Phys. Earth Planet. Inter. 41, 225–239 (1986).

    Article  ADS  Google Scholar 

  2. Knittle, E. & Jeanloz, R. Earth's core-mantle boundary: results of experiment at high pressures and temperatures. Science 251, 1438–1443 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Kellogg, L. H. & King, S. D. Effect of mantle plumes on the growth of D″ by reaction between the core and mantle. Geophys. Res. Lett. 20, 379–382 (1993).

    Article  ADS  Google Scholar 

  4. Loper, D. E. & Lay, T. The core-mantle boundary region. J. Geophys. Res. 100, 6397–6420 (1995).

    Article  ADS  Google Scholar 

  5. Vinnik, L., Farra, V. & Romanowicz, B. Observational evidence for diffracted SV in the shadow of the Earth's core. Geophys. Res. Lett. 16, 519–522 (1989).

    Article  ADS  Google Scholar 

  6. Lay, T. & Young, C. J. Analysis of seismic SV waves in the core's penumbra. Geophys. Res. Lett. 18, 1373–1376 (1991).

    Article  ADS  Google Scholar 

  7. Maupin, V. On the possibility of anisotropy in the D″ layer as inferred from the polarization of diffracted S-waves. Phys. Earth Planet. Inter. 87, 1–32 (1994).

    Article  ADS  Google Scholar 

  8. Vinnik, L., Romanowicz, B., Le Stunff, Y. & Makeyeva, L. Seismic anisotropy in the D″ layer. Geophys. Res. Lett. 22, 1657–1660 (1995).

    Article  ADS  Google Scholar 

  9. Kendall, J. M. & Silver, P. G. Constraints from seismic anisotropy on the nature of the lowermost mantle. Nature 381, 409–412 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Matzel, E., Sen, S. E. & Grand, S. P. Evidence for anisotropy in the deep mantle beneath Alaska. Geophys. Res. Lett. 23, 2416–2420 (1996).

    Article  ADS  Google Scholar 

  11. Garnero, E. & Lay, T. Lateral variations in lowermost mantle shear wave anisotropy beneath the north Pacific and Alaska. J. Geophys. Res. 102, 8121–8135 (1996).

    Article  ADS  Google Scholar 

  12. Dziewonski, A. M. & Anderson, D. L. Preliminary Reference Earth Model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  13. Schweitzer, J. & Mueller, G. Anomalous difference traveltimes and amplitude ratios of SKS and SKKS from Fiji-Tonga events. Geophys. Res. Lett. 13, 1529–1532 (1986).

    Article  ADS  Google Scholar 

  14. Garnero, E. & Helmberger, D. V. Travel times of S and SKS: implication for three-dimensional lower mantle structure beneath the central Pacific. J. Geophys. Res. 98, 8225–8241 (1993).

    Article  ADS  Google Scholar 

  15. Li, X. D. & Romanowicz, B. Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. J. Geophys. Res. 101, 22245–22272 (1996).

    Article  ADS  Google Scholar 

  16. Grand, S., van der Hilst, R. & Widiyantoro, S. Global seismic tomography: a snapshot of convection in the Earth. GSA Today 7, 1–7 (1997).

    Google Scholar 

  17. Breger, L., Romanowicz, B. & Vinnik, L. Test of tomographic model of D″ using differential travel time data. Geophys. Res. Lett. 25, 5–8 (1998).

    Article  ADS  Google Scholar 

  18. Garnero, E. & Helmberger, D. V. Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific. Geophys. Res. Lett. 23, 977–980 (1996).

    Article  ADS  Google Scholar 

  19. Backus, G. E. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res. 67, 4427–4440 (1962).

    Article  ADS  Google Scholar 

  20. Nevsky, M. V. Quasianisotropy of Velocities of Seismic Waves (Nauka, Moscow, (1974). (in Russian).

    Google Scholar 

  21. Levin, F. K. Seismic velocities in transversely isotropic media. Geophysics 44, 918–936 (1979).

    Article  ADS  Google Scholar 

  22. Vinnik, L., Breger, L. & Romanowicz, B. On the inversion of Sd particle motion for anisotropy in D″. Geophys. Res. Lett. 25, 679–682 (1998).

    Article  ADS  Google Scholar 

  23. Kind, R. & Mueller, G. Computations of SV waves in realistic Earth models. J. Geophys. 41, 142–162 (1975).

    Google Scholar 

  24. Garnero, E. & Helmberger, D. V. Avery slow basal layer underlying large-scale low-velocity anomalies in the lower mantle beneath the Pacific; evidence from core phases. Phys. Earth Planet. Inter. 91, 161–176 (1995).

    Article  ADS  Google Scholar 

  25. Williams, Q. & Garnero, E. Seismic evidence for partial melt at the base of Earth's mantle. Science 273, 1528–1530 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Mori, J. & Helmberger, D. V. Localized boundary layer below the mid-Pacific velocity anomaly identified from a PcP precursor. J. Geophys. Res. 100, 20359–20365 (1995).

    Article  ADS  Google Scholar 

  27. Karato, S. I. Seismic anisotropy in the deep mantle, boundary layers and the geometry of mantle convection. Pure Appl. Geophys. 151, 565–587 (1998).

    Article  ADS  Google Scholar 

  28. Wysession, M. E., Okal, E. A. & Bina, C. R. The structure of the core-mantle boundary from diffracted waves. J. Geophys. Res. 97, 8749–8764 (1992).

    Article  ADS  Google Scholar 

  29. Jeanloz, R. in Relating Geophysical Structures and Processes, The Jeffreys Volume 121–127 (Geophys. Mongr. 76, Am. Geophys. Union, Washington DC, (1993).

    Google Scholar 

  30. Vinnik, L., Chevrot, S. & Montagner, J. P. Evidence for a stagnant plume in the transition zone? Geophys. Res. Lett. 24, 1007–1011 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Wysession for reviews. This work was partially supported by NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Romanowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinnik, L., Breger, L. & Romanowicz, B. Anisotropic structures at the base of the Earth's mantle. Nature 393, 564–567 (1998). https://doi.org/10.1038/31208

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31208

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing