Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

New theory for receptor mechanism of carotid body chemoreceptors

Abstract

EVER since De Castro1 first ascribed a chemosensory function to the carotid body (later confirmed by Heymans, et al.2), there has been much discussion and controversy over the precise mechanism whereby stimulation of the afferent fibres is achieved3,4. The controversy initially centred around the nature of the neurotransmitter released by the glomus cell, which was assumed to be highly sensitive to hypoxia and less sensitive to hypercapnia and acidaemia. Perhaps the most generally accepted theory was that the glomus cells respond to hypoxia by releasing a neurotransmitter that initiates an increase in firing rate of the nerve fibres terminating on the glomus cells. The afferent nature of these fibres was originally deduced by De Castro5 from light microscopic examination of the nerve fibres innervating the carotid body. The early ultrastructural studies, however, failed to show clear evidence of afferent types of nerve ending in synaptic contact with the glomus cells. On the contrary, these nerve endings were purported to be presynaptic and therefore efferent in function because they contain large numbers of agranular ‘synaptic’ vesicles6–8. This conclusion was further substantiated by Biscoe et al.9, who showed that intracranial decentralisation of the IXth cranial nerve caused degeneration of nerve endings on glomus cells. These findings led to an alternative theory of chemoreceptor action3. In this case the chemosensory function is attributed to numerous free nerve endings of small diameter, which are found in the carotid body tissue. The glomus cells and associated nerves are held to form part of an efferent inhibitory feedback system, in which release of biogenic amines, that are known to be present in large quantities in glomus cells, depresses chemoreceptor activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. De Castro, F., Trab. Lab. Invest. biol. Univ. Madr., 25, 331–380 (1928).

    Google Scholar 

  2. Heymans, C., Bouckaert, J. J., and Regniers, P., Le sinus carotidien et la zone homologue cardio-sortique (Doin, Paris; 1933).

    Google Scholar 

  3. Biscoe, T. J., Phys. Rev., 51, 437–495 (1971).

    CAS  Google Scholar 

  4. Howe, A., and Neil, E., in Handbook of Sensory Physiology, 3(1), 47–80 (1972).

    Google Scholar 

  5. De Castro, F., Trab. Lab. Invest. biol. Univ. Madr., 24, 365–432 (1926).

    Google Scholar 

  6. Biscoe, T. J., and Stehbens, W. E., Nature, 208, 708–709 (1965).

    Article  ADS  Google Scholar 

  7. Biscoe, T. J., and Stehbens, W. E., J. Cell Biol., 30, 563–568 (1966).

    Article  CAS  Google Scholar 

  8. Biscoe, T. J., and Stehbens, W. E., Q. Jl. exp. Physiol., 52, 31–36 (1967).

    Article  Google Scholar 

  9. Biscoe, T. J., Lall, A., and Sampson, S. R., J. Physiol., Lond., 208, 133–152 (1970).

    Article  CAS  Google Scholar 

  10. Hess, A., and Zapata, P., Fedn. Proc., 31, 1365–1382 (1972).

    CAS  Google Scholar 

  11. Kobayashi, S., Archvm, histol. jap., 33, 397–420 (1971).

    Article  CAS  Google Scholar 

  12. Eyzaguirre, C., and Zapata, P., in Arterial Chemoreceptors (edit. by Torrance, R. W.), 213–;247 (Blackwell, Oxford, 1968).

    Google Scholar 

  13. Dearnaley, D. P., Fillenz, M., and Woods, R. I., Proc. R. Soc. Ser. B., 170, 195–203 (1968).

    Article  ADS  CAS  Google Scholar 

  14. Sampson, S. R., Brain Res., 45, 266–270 (1972).

    Article  CAS  Google Scholar 

  15. Nishi, K., and Eyzaguirre, C., Brain Res., 33, 37–56 (1971).

    Article  CAS  Google Scholar 

  16. Strumwasser, F., in Physiological and Biochemical Aspects of Nervous Integration (edit. by Carlson, F. D.), 329–343 (Prentice-Hall, New Jersey, 1968).

    Google Scholar 

  17. Frazier, W. T., Kandel, E. R., Kupfermann, I., Waziri, R., and Coggeshall, R. E., J. Neurophysiol., 30, 1288–1351 (1967).

    Article  Google Scholar 

  18. Gainer, H., Brain Res., 39, 403–418 (1972).

    Article  CAS  Google Scholar 

  19. Biscoe, T. J., Sampson, S. R., and Purves, M. J., Nature, 215, 654–655 (1967).

    Article  ADS  CAS  Google Scholar 

  20. Fillenz, M., and Woods, R. I., J. Physiol., Lond., 186, 39–40P (1966).

    Google Scholar 

  21. Mills, E., and Jobsis, F. F., J. Neurophysiol., 35, 405–428 (1972).

    Article  CAS  Google Scholar 

  22. Goodman, N. W., and McCloskey, D. I., Brain Res., 39, 501–504 (1972).

    Article  CAS  Google Scholar 

  23. Eyzaguirre, C., and Nishi, K., J. Neurophysiol., 37, 156–169 (1974).

    Article  CAS  Google Scholar 

  24. Tomita, T., in Handbook of Sensory Physiology, 7, 483–511 (1972).

    Google Scholar 

  25. Harris, G. G., Frishkopf, L. S., and Flock, Å., Science, 167, 76–79 (1970).

    Article  ADS  CAS  Google Scholar 

  26. Biscoe, T. J., and Sampson, S. R., J. Physiol., Lond., 196, 327–338 (1968).

    Article  CAS  Google Scholar 

  27. Sampson, S. R., and Biscoe, T. J., Experientia, 26, 261–262 (1970).

    Article  CAS  Google Scholar 

  28. Neil, E., and O'Regan, R. G., J. Physiol., Lond., 215, 15–32 (1971a).

    Article  CAS  Google Scholar 

  29. Neil, E., and O'Regan, R. G., J. Physiol., Lond., 215, 33–47 (1971b).

    Article  CAS  Google Scholar 

  30. Verna, A., J. Microscopie, 16, 299–308 (1973).

    Google Scholar 

  31. Goodman, N. W., J. Physiol., Lond., 230, 299–311 (1973).

    Article  Google Scholar 

  32. O'Regan, R. G., J. Physiol., Lond., 239, 93–96P (1974).

    Google Scholar 

  33. Fidone, S. J., and Sato, A., Brain Res., 22, 181–193 (1970).

    Article  CAS  Google Scholar 

  34. Mitchell, R. A., Sinha, A. K., and McDonald, D. M., Brain Res., 43, 681–685 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

OSBORNE, M., BUTLER, P. New theory for receptor mechanism of carotid body chemoreceptors. Nature 254, 701–703 (1975). https://doi.org/10.1038/254701a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/254701a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing