Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Environmental controls on the geographic distribution of zooplankton diversity

Abstract

Proposed explanations for the geographic distribution of zooplankton diversity include control of diversity by geographic variation in: physical and chemical properties of the near-surface ocean1,2,3; the surface area of biotic provinces4; energy availability5; rates of evolution and extinction6; and primary productivity7. None of these explanations has been quantitatively tested on a basin-wide scale. Here we used assemblages of planktic foraminifera from surface sediments to test these hypotheses. Our analysis shows that sea-surface temperature measured by satellite8 explains nearly 90% of the geographic variation in planktic foraminiferal diversity throughout the Atlantic Ocean. Temperatures at depths of 50, 100 and 150 m (ref. 9) are highly correlated to sea-surface temperature and explain the diversity pattern nearly as well. These findings indicate that geographic variation in zooplankton diversity may be directly controlled by the physical structure of the near-surface ocean. Furthermore, our results show that planktic foraminiferal diversity does not strictly adhere to the model of continually decreasing diversity from equator to pole. Instead, planktic foraminiferal diversity peaks in the middle latitudes in all oceans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global pattern of planktic foraminiferal diversity from 1,068 surface-sediment samples.
Figure 2: Actual and predicted planktic foraminiferal diversity in the Atlantic.
Figure 3: Residual diversity (actual diversity minus predicted diversity) from the SST polynomial regression (a) and the temperature at 150 m water depth polynomial regression (b).

Similar content being viewed by others

References

  1. Ruddiman, W. F. Recent planktonic Foraminifera: Dominance and diversity in North Atlantic surface sediments. Science 164, 1164–1167 (1969).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Williams, D. F. & Johnson, W. C. Diversity of recent planktonic foraminifera in the Southern Indian Ocean and Late Pleistocene paleotemperatures. Quat. Res. 5, 237–250 (1975).

    Article  Google Scholar 

  3. Balsam, W. L. & Flessa, K. W. Patterns of planktonic foraminiferal abundance and diversity in surface sediments of the western North Atlantic. Mar. Micropaleontol. 3, 279–294 (1978).

    Article  ADS  Google Scholar 

  4. Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, Cambridge, (1995).

    Book  Google Scholar 

  5. Connell, J. H. & Orias, E. The ecological regulation of species diversity. Am. Nat. 98, 399–414 (1964).

    Article  Google Scholar 

  6. Stehli, F. G., Douglas, R. G. & Newell, N. D. Generation and maintenance of gradients in taxonomic diversity. Science 164, 947–949 (1969).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Currie, D. J. Energy and large-scale patterns of animal and plant species richness. Am. Nat. 137, 27–49 (1991).

    Article  Google Scholar 

  8. Casey, K. S. & Cornillon, P. Acomparison of satellite and in situ based sea surface temperature climatologies. J. Clim. 12, 1848–1863 (1999).

    Article  ADS  Google Scholar 

  9. Osborne, J. & Flinchem, E. P. Ocean Atlas (NOAA/PMEL, Seattle, (1994).

    Google Scholar 

  10. Reid, J. L., Brinton, E., Fleminger, A., Venrick, E. L. & McGowan, J. A. in Advances in Oceanography (eds Charnock, H. & Deacon, G.) 65–130 (Plenum, New York, (1978).

    Book  Google Scholar 

  11. McGowan, J. A. & Walker, P. W. Dominance and diversity maintenance in an oceanic ecosystem. Ecol. Monogr. 55, 103–118 (1985).

    Article  Google Scholar 

  12. Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).

    Google Scholar 

  13. Pilson, M. E. Q. An Introduction to the Chemistry of the Sea (Prentice-Hall, Upper Saddle River, New Jersey, (1998).

    Google Scholar 

  14. Rohde, K. Latitudinal gradients in species diversity: The search for the primary cause. Oikos 65, 514–527 (1992).

    Article  Google Scholar 

  15. Bogdanov, D. V. Map of the natural zones of the ocean. Okeanologiya 1, 941–943 (1961).

    Google Scholar 

  16. Bijma, J., Faber, W. F. & Hemleben, C. Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory culture. J. Foram. Res. 20, 95–116 (1990).

    Article  Google Scholar 

  17. Wei, K.-Y. & Kennett, J. P. Taxonomic evolution of Neogene planktonic foraminifera and paleoceanographic relations. Paleoceanography 1, 67–84 (1986).

    Article  ADS  Google Scholar 

  18. Hemleben, C., Spindler, M. & Anderson, O. R. Modern Planktonic Foraminifera (Springer, New York, (1989).

    Book  Google Scholar 

  19. Bainbridge, A. E. GEOSECS Atlantic Expedition 2 (National Science Foundation, Washington, (1982).

    Google Scholar 

  20. McGowan, J. A. & Walker, P. W. Structure in the copepod community of the North Pacific central gyre. Ecol. Monogr. 49, 195–226 (1979).

    Article  Google Scholar 

  21. Venrick, E. L. Phytoplankton in an oligotrophic ocean: Observations and questions. Ecol. Monogr. 52, 129–154 (1982).

    Article  Google Scholar 

  22. Plueddemann, A. J. & Pinkel, R. Characterization of the patterns of diel migration using a Doppler sonar. Deep-Sea Res. 36, 509–530 (1989).

    Article  ADS  Google Scholar 

  23. MacArthur, R. H. & MacArthur, J. On bird species diversity. Ecology 42, 594–598 (1961).

    Article  Google Scholar 

  24. SeaWiFs Project, G. S. F. C., Distributed Active Archive Center. http://seawifs.gsfc.nasa.gov/SEAWIFS; http://www.giss.nasa.gov.

  25. Levitus, S. & Boyer, T. P. World Ocean Atlas (National Oceanic and Atmospheric Administration, Washington, (1994).

    Google Scholar 

  26. Halpern, D., Zlotnicki, V., Brown, O., Freilich, M. & Wentz, F. An Atlas of Monthly Mean Distributions of SSMI Surface Wind Speed, AVHRR/2 Sea Surface Temperature, AMI Surface Wind Velocity and TOPEX/POSEIDON Sea Surface Height During 1994 (Jet Propulsion Lab., Pasadena, California, (1995).

    Google Scholar 

  27. Levitus, S. Climatological Atlas of the World Ocean (National Oceanic and Atmospheric Administration, Rockville, MD, (1982).

    Google Scholar 

  28. Howard, K. L. Estimating Global Ocean Primary Productivity Using Satellite-Derived Data (Univ. Rhode Island, (1995).

    Google Scholar 

  29. Nelson, D. M. & Smith, W. O. Sverdrup revisited: critical depths, maximum chlorophyll levels, and the control of Southern Ocean productivity by the irradiance-mixing regime. Limnol. Oceanogr. 36, 1650–1661 (1991).

    Article  ADS  Google Scholar 

  30. Stammer, D. & Wunsch, C. Preliminary assessment of the accuracy and precision of TOPEX/POSEIDON altimeter data with respect to the large-scale ocean circulation. J. Geophys. Res. 99, 24584–24604 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Yoder and J. Ryan for providing the primary productivity and mixed layer data; P. Cornillon and K. Casey for providing the satellite SST data; D. Stammer for providing the geostrophic current velocity data; J. A. McGowan for thoughtful comments; and the U.R.I. Graduate School of Oceanography for publication support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Rutherford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutherford, S., D'Hondt, S. & Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400, 749–753 (1999). https://doi.org/10.1038/23449

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23449

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing