Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhancement of TBP binding by activators and general transcription factors

Abstract

Eukaryotic transcriptional activators function, at least in part, by promoting assembly of the preinitiation complex1,2,3, which comprises RNA polymerase II and its general transcription factors (GTFs). Activator-mediated stimulation of the assembly of the preinitiation complex has been studied in vitro but has been relatively refractory to in vivo analysis. Here we use a DNA-crosslinking/immunoprecipitation assay to study in living cells the first step in the assembly of the preinitiation complex, the interaction between the TATA-box-binding protein (TBP) and its binding site, the TATA box. Analysis of a variety of endogenous yeast genes, and of a series of activators of differing strength, reveals a general correlation between TBP binding and transcriptional activity. Using mutant yeast strains, we show that Mot1 prevents the binding of TBP to inactive promoters and that activator-mediated stimulation of TBP binding requires additional GTFs, including TFIIB and Srb4. Taken together, our results indicate that TBP binding in vivo is stringently controlled, and that the ability of activators to stimulate this step in the assembly of the preinitiation complex is a highly cooperative process involving multiple transcription factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An in vivo crosslinking assay for measuring TBP–TATA-box interaction.
Figure 2: Correlation between TBP binding and transcriptional activit in vivo.
Figure 3: Correlation between transcriptional activity and association of TFIIB and RNA polymerase II with promoters.
Figure 4: Mot1 prevents TBP binding to inactive promoters.
Figure 5: Transcription components that facilitate activator-mediated stimulation of TBP binding.

Similar content being viewed by others

References

  1. Roeder, R. G. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21, 327–335 (1996).

    Article  CAS  Google Scholar 

  2. Orphanides, G., Lagrange, T. & Reinberg, D. The general transcription factors of RNA polymerase II. Genes Dev. 10, 2657–2683 (1996).

    Article  CAS  Google Scholar 

  3. Ptashne, M. & Gann, A. Transcriptional activation by recruitment. Nature 386, 569–577 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Selleck, S. B. & Majors, J. In vivo “photofootprint” change at sequences between the yeast GAL1 upstream activating sequence and “TATA” element required activated GAL4 protein but not a functional TATA element. Proc. Natl Acad. Sci. USA 85, 5399–5403 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Giardian, C. & Lis, J. T. Dynamic protein-DNA architecture of a yeast heat shock promoter. Mol. Cell. Biol. 15, 2737–2744 (1995).

    Article  Google Scholar 

  6. Chen, J., Ding, M. & Pederson, D. S. Binding of TFIID to the CYC1 TATA boxes in yeast occurs independently of upstream activating sequences. Proc. Natl Acad. Sci. USA 91, 11909–11913 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Strahl-Bolsinger, S., Hecht, A., Luo, K. & Grunstein, M. SIR2 and SIR4 interactions in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83–93 (1997).

    Article  CAS  Google Scholar 

  8. Orlando, V. & Paro, R. Mapping polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin. Cell 75, 1187–1198 (1993).

    Article  CAS  Google Scholar 

  9. Lue, N. F., Buchman, A. R. & Kornberg, R. D. Activation of yeast RNA polymerase II transcription by a thymidine-rich upstream element in vitro. Proc. Natl Acad. Sci. USA 86, 486–490 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Ma, J. & Ptashne, M. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48, 847–853 (1987).

    Article  CAS  Google Scholar 

  11. Auble, D. T. et al. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev. 8, 1920–1934 (1994).

    Article  CAS  Google Scholar 

  12. Davis, J. L., Kunisawa, R. & Thorner, J. Apresumptive helicase (MOT1 gene product) affects gene expression and is required for viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 1879–1892 (1992).

    Article  CAS  Google Scholar 

  13. Collart, M. A. The NOT, SPT3, and MOT1 genes functionally interact to regulate transcription at core promoters. Mol. Cell. Biol. 16, 6668–6676 (1996).

    Article  CAS  Google Scholar 

  14. Madison, J. M. & Winston, F. Evidence that Spt3 functionally interacts with Mot1, TFIIA, and TATA-binding protein to confer promoter-specific transcription control in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 287–295 (1997).

    Article  CAS  Google Scholar 

  15. Shen, W.-C. & Green, M. R. Yeast TAFII145 functions as a core promoter selectivity factor, not a general coactivator. Cell 90, 615–624 (1997).

    Article  CAS  Google Scholar 

  16. Thompson, C. M., Koleske, A. J., Chao, D. M. & Young, R. A. Amultisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73, 1361–1375 (1993).

    Article  CAS  Google Scholar 

  17. Kim, Y.-J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. Amultiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).

    Article  CAS  Google Scholar 

  18. Nikolov, D. B. et al. Crystal structure of a TFIIB–TBP–TATA-element ternary complex. Nature 377, 119–128 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Tang, H., Sun, X., Reinberg, D. & Ebright, R. H. Protein–protein interactions in eukaryotic transcription initiation: structure of the preinitiation complex. Proc. Natl Acad. Sci. USA 93, 1119–1124 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Bryant, G. O., Martel, L. S., Burley, S. K. & Berk, A. J. Radical mutations reveal TATA-box binding protein surfaces required for activated transcription in vitro. Genes Dev. 10, 2491–2504 (1996).

    Article  CAS  Google Scholar 

  21. Lee, M. & Struhl, K. Aseverely defective TATA-binding protein-TFIIB interaction does not preclude transcription activation in vivo. Mol. Cell. Biol. 17, 1336–1345 (1997).

    Article  CAS  Google Scholar 

  22. Thompson, C. M. & Young, R. A. General requirement for RNA polymerase II holoenzymes in vivo. Proc. Natl Acad. Sci. USA 92, 4587–4590 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Koh, S. S., Ansar, A. Z., Ptashne, M. & Young, R. A. An activator target in the RNA polymerase II holoenzyme. Mol. Cell 1, 859–904 (1998).

    Article  Google Scholar 

  24. Lin, Y. S. & Green, M. R. Mechanism of action of an acidic transcriptional activator in vitro. Cell 64, 971–981 (1991).

    Article  CAS  Google Scholar 

  25. Burley, S. K. & Roeder, R. G. Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem. 65, 768–799 (1996).

    Article  Google Scholar 

  26. Verrijzer, C. P. & Tjian, R. TAFs mediate transcriptional activation and promoter selectivity. Trends Biochem. Sci. 21, 338–342 (1996).

    Article  CAS  Google Scholar 

  27. Koleske, A. J. & Young, R. A. The RNA polymerase II holoenzyme and its implications for gene regulation. Trends Biochem. Sci. 20, 113–115 (1995).

    Article  CAS  Google Scholar 

  28. Halle, J.-P. & Meisterernst, M. Gene expression: increasing evidence for a transcriptosome. Trends Genet. 12, 161–163 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Young, M. Grunstein, J. Thorner and J. Majors for yeast strains, J. Ma for plasmids, and K. Struhl for discussion and for communicating unpublished results. This work was supported in part by a grant from the NIH to M.R.G. M.R.G. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XY., Virbasius, A., Zhu, X. et al. Enhancement of TBP binding by activators and general transcription factors. Nature 399, 605–609 (1999). https://doi.org/10.1038/21232

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21232

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing