Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A new protease required for cell-cycle progression in yeast

Abstract

In eukaryotes, protein function can be modulated by ligation to ubiquitin or to ubiquitin-like proteins (Ubl proteins)1,2,3. The vertebrate Ubl protein SUMO-1 is only 18% identical to ubiquitin but is 48% identical to the yeast protein Smt3. Both SUMO-1 and Smt3 are ligated to cellular proteins, and protein conjugation to SUMO-1/Smt3 is involved in many physiological processes3,4,5,6,7,8,9,10. It remained unknown, however, whether deconjugation of SUMO-1/Smt3 from proteins is also essential. Here we describe a yeast Ubl-specific protease, Ulp1, which cleaves proteins from Smt3 and SUMO-1 but not from ubiquitin. Ulp1 is unrelated to any known deubiquitinating enzyme but shows distant similarity to certain viral proteases, indicating the existence of a widely conserved protease fold. Proteins related to Ulp1 are present in many organisms, including several human pathogens. The pattern of Smt3-coupled proteins in yeast changes markedly throughout the cell cycle, and specific conjugates accumulate in ulp1 mutants. Ulp1 has several functions, including an essential role in the G2/M phase of the cell cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the Ulp1 enzyme.
Figure 2: Ulp1 is a new type of cysteine protease.
Figure 3: Mutagenesis of putative Ulp1 active-site residues and characterization of ulp1 mutants.
Figure 4: Ulp1 is required for cell-cycle progression.
Figure 5: Smt3–protein conjugates in yeast.

Similar content being viewed by others

References

  1. Pickart, C. M. Targeting of substrates to the 26S proteasome. FASEB J. 11, 1055–1066 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Varshavsky, A. The ubiquitin system. Trends Biochem. Sci. 22, 383–387 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Johnson, P. R. & Hochstrasser, M. SUMO-1: ubiquitin gains weight. Trends Cell Biol. 7, 408–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Saitoh, H., Pu, R. T. & Dasso, M. SUMO-1: wrestling with a new ubiquitin-related modifier. Trends Biochem. Sci. 22, 374–376 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Seufert, W., Futcher, B. & Jentsch, S. Aubiquitin-conjugating enzyme involved in the degradation of both S- and M-phase cyclins. Nature 373, 78–81 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Johnson, E. S., Schwienhorst, I., Dohmen, R. J. & Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16, 5509–5519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saitoh, H. et al. Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr. Biol. 8, 121–124 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Müller, S., Matunis, M. J. & Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 17, 61–70 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Desterro, J. M. P., Rodriguez, M. S. & Hay, R. T. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell 2, 233–239 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Wilkinson, K. D. & Hochstrasser, M. in Ubiquitin and the Biology of the Cell (eds Peters, J. M., Harris, J. R. & Finley, D.) 99–125 (Plenum, New York, (1998).

    Book  Google Scholar 

  11. Rose, M. D., Novick, P., Thomas, J. H., Botstein, D. & Fink, G. R. ASaccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60, 237–243 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Tobias, J. W. & Varshavsky, A. Cloning and functional analysis of the ubiquitin-specific protease gene UBP1 of Saccharomyces cerevisiae. J. Biol. Chem. 266, 12021–12028 (1991).

    CAS  PubMed  Google Scholar 

  13. Matunis, M. J., Wu, J. & Blobel, G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol. 140, 499–509 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meluh, P. B. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6, 793–807 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ding, J., McGrath, W. J., Sweet, R. M. & Mangel, W. F. Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor. EMBO J. 15, 1778–1783 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. López-Otin, C., Simón-Mateo, C., Martinez, L. & Vinuela, E. Gly-Gly-X, a novel consensus sequence for the proteolytic processing of viral and cellular proteins. J. Biol. Chem. 264, 9107–9110 (1989).

    PubMed  Google Scholar 

  18. Lee, P. & Hruby, D. E. Proteolytic cleavage of vaccinia virus virion proteins. Mutational analysis of the specificity determinants. J. Biol. Chem. 269, 8616–8622 (1994).

    CAS  PubMed  Google Scholar 

  19. Schwarz, S. E., Matuschewski, K., Liakopoulos, D., Sheffner, M. & Jentsch, S. The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc. Natl Acad. Sci. USA 95, 560–564 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Papa, F. & Hochstrasser, M. The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene. Nature 366, 313–319 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Deshaies, R. J. Phosphorylation and proteolysis: partners in the regulation of cell division in budding yeast. Curr. Opin. Genet. Dev. 7, 7–16 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Kamitani, T. et al. Identification of three major sentrinization sites in PML. J. Biol. Chem. 273, 26675–26682 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Müller, S., Miller, W. H. J. & Dejean, A. Trivalent antimonials induce degradation of the PML-RAR oncoprotein and reorganization of the promyelocytic leukemia nuclear bodies in acute promyelocytic leukemia NB4 cells. Blood 92, 4308–4316 (1998).

    PubMed  Google Scholar 

  25. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Wiley, New York, (1989).

    Google Scholar 

  26. Johnson, P. R., Swanson, R., Rakhilina, L. & Hochstrasser, M. Degradation signal masking by heterodimerization of MATα2 and MATa1 blocks their mutual destruction by the ubiquitin-proteasome pathway. Cell 94, 217–227 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Matunis for the RanGAP1 cDNA expression constructs; R. Swanson for help with immunofluorescence microscopy; R. Cohen for ubiquitin aldehyde; J. Choy for help with FACS analysis; B. Lieberman for plasmids; the University of Chicago Oligopeptide Synthesis facility for N-terminal protein sequencing; and A. Amerik, J. Laney, S. Swaminathan, R. Swanson and A. Turkewitz for critical reading of the manuscript. This work was supported by a grant from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Hochstrasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, SJ., Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398, 246–251 (1999). https://doi.org/10.1038/18457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18457

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing