Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Urokinase receptor primes cells to proliferate in response to epidermal growth factor

Abstract

Epidermal growth factor (EGF) expresses mitogenic activity by a mechanism that requires the EGF receptor (EGFR). We report that murine embryonic fibroblasts (MEFs) proliferate in response to EGF only when these cells express the urokinase receptor (uPAR). EGFR expression was equivalent in uPAR−/− and uPAR+/+ MEFs. In response to EGF, these cells demonstrated equivalent overall EGFR tyrosine phosphorylation and ERK/MAP kinase activation; however, phosphorylation of Tyr-845 in the EGFR, which has been implicated in cell growth, was substantially decreased in uPAR−/− MEFs. STAT5b activation also was decreased. As Tyr-845 is a c-Src target, we overexpressed c-Src in uPAR−/− MEFs and rescued EGF mitogenic activity. Rescue also was achieved by expressing murine but not human uPAR, suggesting a role for autocrine uPAR cell-signaling. In MDA-MB 231 breast cancer cells, EGF mitogenic activity was blocked by uPAR gene silencing, with antibodies that block uPA-binding to uPAR, and with a synthetic peptide that disrupts uPAR-dependent cell signaling. Again, c-Src overexpression rescued the mitogenic activity of EGF. We conclude that uPAR-dependent cell-signaling may prime cells to proliferate in response to EGF by promoting Tyr-845 phosphorylation and STAT5b activation. The importance of this pathway depends on the c-Src level in the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Abram CL, Courtneidge SA . (2000). Src family tyrosine kinases and growth factor signaling. Exp Cell Res 254: 1–13.

    Article  CAS  Google Scholar 

  • Aguirre Ghiso JA, Kovalski K, Ossowski L . (1999). Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147: 89–104.

    Article  CAS  Google Scholar 

  • Angelucci A, Gravina GL, Rucci N, Millimaggi D, Festuccia C, Muzi P et al. (2006). Suppression of EGF-R signaling reduces the incidence of prostate cancer metastasis in nude mice. Endocr Relat Cancer 13: 197–210.

    Article  CAS  Google Scholar 

  • Biscardi JS, Belsches AP, Parsons SJ . (1998). Characterization of human epidermal growth factor receptor and c-Src interactions in human breast tumor cells. Mol Carcinog 21: 261–272.

    Article  CAS  Google Scholar 

  • Biscardi JS, Ishizawar RC, Silva CM, Parsons SJ . (2000). Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res 2: 203–210.

    Article  CAS  Google Scholar 

  • Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ . (1999). c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem 274: 8335–8343.

    Article  CAS  Google Scholar 

  • Blasi F, Carmeliet P . (2002). uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3: 932–943.

    Article  CAS  Google Scholar 

  • Boerner JL, Demory ML, Silva C, Parsons SJ . (2004). Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol Cell Biol 24: 7059–7071.

    Article  CAS  Google Scholar 

  • Bolla M, Chedin M, Souvignet C, Marron J, Arnould C, Chambaz E . (1990). Estimation of epidermal growth factor receptor in 177 breast cancers: correlation with prognostic factors. Breast Cancer Res Treat 16: 97–102.

    Article  CAS  Google Scholar 

  • Daub H, Weiss FU, Wallasch C, Ullrich A . (1996). Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379: 557–560.

    Article  CAS  Google Scholar 

  • Deutsch DG, Mertz ET . (1970). Plasminogen: purification from human plasma by affinity chromatography. Science 170: 1095–1096.

    Article  CAS  Google Scholar 

  • Duffy MJ, Maguire TM, McDermott EW, O'Higgins N . (1999). Urokinase plasminogen activator: a prognostic marker in multiple types of cancer. J Surg Oncol 71: 130–135.

    Article  CAS  Google Scholar 

  • Estreicher A, Wohlwend A, Belin D, Schleuning WD, Vassalli JD . (1989). Characterization of the cellular binding site for the urokinase-type plasminogen activator. J Biol Chem 264: 1180–1189.

    CAS  PubMed  Google Scholar 

  • Jo M, Thomas KS, Marozkina N, Amin TJ, Silva CM, Parsons SJ et al. (2005). Dynamic assembly of the urokinase-type plasminogen activator signaling receptor complex determines the mitogenic activity of urokinase-type plasminogen activator. J Biol Chem 280: 17449–17457.

    Article  CAS  Google Scholar 

  • Jo M, Thomas KS, O'Donnell DM, Gonias SL . (2003). Epidermal growth factor receptor-dependent and -independent cell-signaling pathways originating from the urokinase receptor. J Biol Chem 278: 1642–1646.

    Article  CAS  Google Scholar 

  • Kim H, Chan R, Dankort DL, Zuo D, Najoukas M, Park M et al. (2005). The c-Src tyrosine kinase associates with the catalytic domain of ErbB-2: implications for ErbB-2 mediated signaling and transformation. Oncogene 24: 7599–7607.

    Article  CAS  Google Scholar 

  • Kiyan J, Kiyan R, Haller H, Dumler I . (2005). Urokinase-induced signaling in human vascular smooth muscle cells is mediated by PDGFR-beta. EMBO J 24: 1787–1797.

    Article  CAS  Google Scholar 

  • Kloth MT, Laughlin KK, Biscardi JS, Boerner JL, Parsons SJ, Silva CM . (2003). STAT5b, a Mediator of Synergism between c-Src and the Epidermal Growth Factor Receptor. J Biol Chem 278: 1671–1679.

    Article  CAS  Google Scholar 

  • Koshelnick Y, Ehart M, Hufnagl P, Heinrich PC, Binder BR . (1997). Urokinase receptor is associated with the components of the JAK1/STAT1 signaling pathway and leads to activation of this pathway upon receptor clustering in the human kidney epithelial tumor cell line TCL-598. J Biol Chem 272: 28563–28567.

    Article  CAS  Google Scholar 

  • Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L . (2002). EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1: 445–457.

    Article  CAS  Google Scholar 

  • Luttrell LM, Della Rocca GJ, van Biesen T, Luttrell DK, Lefkowitz RJ . (1997). Gbetagamma subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J Biol Chem 272: 4637–4644.

    Article  CAS  Google Scholar 

  • Ma Z, Thomas KS, Webb DJ, Moravec R, Salicioni AM, Mars WM et al. (2002). Regulation of Rac1 activation by the low density lipoprotein receptor-related protein. J Cell Biol 159: 1061–1070.

    Article  CAS  Google Scholar 

  • Ma Z, Webb DJ, Jo M, Gonias SL . (2001). Endogenously produced urokinase-type plasminogen activator is a major determinant of the basal level of activated ERK/MAP kinase and prevents apoptosis in MDA-MB-231 breast cancer cells. J Cell Sci 114: 3387–3396.

    CAS  PubMed  Google Scholar 

  • Mamoune A, Kassis J, Kharait S, Kloeker S, Manos E, Jones DA et al. (2004). DU145 human prostate carcinoma invasiveness is modulated by urokinase receptor (uPAR) downstream of epidermal growth factor receptor (EGFR) signaling. Exp Cell Res 299: 91–100.

    Article  CAS  Google Scholar 

  • Mazzieri R, Furlan F, D'Alessio S, Zonari E, Talotta F, Verde P et al. (2006). A direct link between expression of urokinase plasminogen activator receptor, growth rate and oncogenic transformation in mouse embryonic fibroblasts. Oncogene [e-pub ahead of print].

  • Miettinen PJ, Berger JE, Meneses J, Phung Y, Pedersen RA, Werb Z et al. (1995). Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature 376: 337–341.

    Article  CAS  Google Scholar 

  • Miyamoto S, Teramoto H, Gutkind JS, Yamada KM . (1996). Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol 135: 1633–1642.

    Article  CAS  Google Scholar 

  • Monaghan-Benson E, McKeown-Longo PJ . (2006). Urokinase-type plasminogen activator receptor regulates a novel pathway of fibronectin matrix assembly requiring Src-dependent transactivation of epidermal growth factor receptor. J Biol Chem 281: 9450–9459.

    Article  CAS  Google Scholar 

  • Moro L, Venturino M, Bozzo C, Silengo L, Altruda F, Beguinot L et al. (1998). Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J 17: 6622–6632.

    Article  CAS  Google Scholar 

  • Nguyen DH, Hussaini IM, Gonias SL . (1998). Binding of urokinase-type plasminogen activator to its receptor in MCF-7 cells activates extracellular signal-regulated kinase 1 and 2 which is required for increased cellular motility. J Biol Chem 273: 8502–8507.

    Article  CAS  Google Scholar 

  • Nguyen DH, Webb DJ, Catling AD, Song Q, Dhakephalkar A, Weber MJ et al. (2000). Urokinase-type plasminogen activator stimulates the Ras/Extracellular signal-regulated kinase (ERK) signaling pathway and MCF-7 cell migration by a mechanism that requires focal adhesion kinase, Src, and Shc. Rapid dissociation of GRB2/Sps-Shc complex is associated with the transient phosphorylation of ERK in urokinase-treated cells. J Biol Chem 275: 19382–19388.

    Article  CAS  Google Scholar 

  • O'Reilly DR . (1986). p53 and transformation by SV40. Biol Cell 57: 187–196.

    Article  CAS  Google Scholar 

  • Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C et al. (1999). EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402: 884–888.

    Article  CAS  Google Scholar 

  • Resnati M, Pallavicini I, Wang JM, Oppenheim J, Serhan CN, Romano M et al. (2002). The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc Natl Acad Sci USA 99: 1359–1364.

    Article  CAS  Google Scholar 

  • Singh AB, Harris RC . (2005). Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 17: 1183–1193.

    Article  CAS  Google Scholar 

  • Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D et al. (1995). Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269: 230–234.

    Article  CAS  Google Scholar 

  • Tice DA, Biscardi JS, Nickles AL, Parsons SJ . (1999). Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci USA 96: 1415–1420.

    Article  CAS  Google Scholar 

  • Weaver AM, Hussaini IM, Mazar A, Henkin J, Gonias SL . (1997). Embryonic fibroblasts that are genetically deficient in low density lipoprotein receptor-related protein demonstrate increased activity of the urokinase receptor system and accelerated migration on vitronectin. J Biol Chem 272: 14372–14379.

    Article  CAS  Google Scholar 

  • Wei Y, Eble JA, Wang Z, Kreidberg JA, Chapman HA . (2001). Urokinase receptors promote beta1 integrin function through interactions with integrin alpha3beta1. Mol Biol Cell 12: 2975–2986.

    Article  CAS  Google Scholar 

  • Wei Y, Lukashev M, Simon DI, Bodary SC, Rosenberg S, Doyle MV et al. (1996). Regulation of integrin function by the urokinase receptor. Science 273: 1551–1555.

    Article  CAS  Google Scholar 

  • Yamauchi T, Ueki K, Tobe K, Tamemoto H, Sekine N, Wada M et al. (1997). Tyrosine phosphorylation of the EGF receptor by the kinase Jak2 is induced by growth hormone. Nature 390: 91–96.

    Article  CAS  Google Scholar 

  • Yan Y, Shirakabe K, Werb Z . (2002). The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors. J Cell Biol 158: 221–226.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant CA-94900 from the National Cancer Institute, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S L Gonias.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jo, M., Thomas, K., Takimoto, S. et al. Urokinase receptor primes cells to proliferate in response to epidermal growth factor. Oncogene 26, 2585–2594 (2007). https://doi.org/10.1038/sj.onc.1210066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210066

Keywords

This article is cited by

Search

Quick links