Reviews & Analysis

Filter by:

  • DNA double helix exploiting Watson–Crick base-pairing lays the foundation of DNA nanotechnology. However, other forms of nucleic acids (e.g., triplex, i-motif, and G-quadruplex) exhibiting noncanonical base-base interactions bring about novel functionality. Here, we review the interplay of naturally occurring noncanonical nucleic acids and artificial DNA nanostructures in biomedical applications that have not been possible by duplex formation alone.

    • Shiliang He
    • Zhilei Ge
    • Xiuhai Mao
    Review Article Open Access
  • In this review, we summarize the latest progress in the development of strategies to relieve tumor hypoxia for improved PDT efficacy, from the design of novel nonreactive oxygen carriers to reactive materials and other strategies, including the regulation of tumor microenvironments and PDT-involved multimodal therapy.

    • Zijun Shen
    • Qingming Ma
    • Jie Cao
    Review Article Open Access
  • This review encompasses syntheses, characterizations, and applications of InP magic-sized clusters (MSCs) which are originally found as intermediates during the growth of InP quantum dots (QDs). Various tools to characterize MSCs and the intermediate characteristics of InP MSCs and InP MSCs having incorporated heterogeneous atoms such as chlorine or zinc are discussed. Developments in the syntheses of InP QDs and MSC-mediated growth mechanisms involving fragments, monomers or other nanoclusters are also addressed.

    • Yongju Kwon
    • Sungjee Kim
    Review Article Open Access
  • This review introduce the structure and properties of electrospun nanofiber materials and the various strategies for assembling soft electronic devices such as sensors, transistors, and components for energy harvesting and storage.

    • Yan Wang
    • Tomoyuki Yokota
    • Takao Someya
    Review Article Open Access
  • For the organic ferromagnetic materials, strong couplings have been observed among the charge, orbit, spin, and phonon. Therefore, the recent progress of organic magnetoelectric and optomagnetic coupling effects are briefly summarized in this review paper. Magnetoelectric coupling and opto-magnetic coupling materials have great potential applications in low-power multifunctional multiferroic magnetoelectric memory and all magneto-optical recording, respectively. However, the mechanism of the origin of the couplings is still only partly understood. Thus, further studying on the organic magnetoelectric and opto-magnetic couplings could promote the understanding on the mechanism and their potential industrial applications.

    • Zhongxuan Wang
    • Wei Qin
    Review Article Open Access
  • Despite the hopeful signs of progress of COVID-19 vaccine development and vaccination, the highly infectious nature and mutations of SARS-CoV-2 are warnings of an infighting annual revival of the virus. This article clarifies the complexities of COVID-19 by referring to the molecular-level mechanisms of the infection, immune response, replication, and transmission of SARS-CoV-2, which are essential during the development of an effective vaccine or a drug to fight the pandemic. Furthermore, this article underscores the significance of an interface among chemistry, nanoscience, cell biology, immunology, and virology to resolve the challenges of COVID-19.

    • Prem Kumar
    • Jeladhara Sobhanan
    • Vasudevanpillai Biju
    Review Article Open Access
  • In this review, recent developments of carbon nanomaterial-based SERS biosensors are systematically summarized, which focus on fundamental principles for carbon-based materials for SERS biosensor design, fabrication methods and operation mechanisms, providing insight into their rapidly growing future potential in the fields of biomedical and biological engineering, in-situ analysis, quantitative analysis and flexible photoelectric functional materials.

    • Xiu Liang
    • Ning Li
    • Biao Kong
    Review Article Open Access
  • The structural inhomogeneity is inherited by residual strain in perovskite crystals. The residual strain affects an electronic band structure of the perovskite film and thus determines its optoelectronic properties. Therefore, the strain engineering can be a powerful tool to not only govern structural defects but also derive demanding properties with an ensured phase stability. In this review, the effect of lattice strain is broadly explored, coupled with relevant affecting parameters.

    • Hui-Seon Kim
    • Nam-Gyu Park
    Review Article Open Access
  • Metal organic frameworks are typically synthesized at the macroscale, into powders, films or as coatings generated across appropriate supporting materials. The downsizing of metal–organic frameworks offers opportunities to not only benefit from their properties at the nanoscale but also to enhance surface interactions and reactivities. The potential and challenges with current downsizing techniques are discussed in this review in light of materials properties and application performance.

    • Ken Aldren S. Usman
    • James W. Maina
    • Joselito M. Razal
    Review Article Open Access
  • 2D materials’ thinness and environmental sensitivity induce novel surface forces which render fundamental 2D material–liquid interactions variable. 2D material wettability is perturbed by substrates and contaminants enabling templating, filtration, and actuation. Fluid structure at 2D material–liquid interfaces is similarly perturbed, partially explaining wettability modulation and enabling distinctive electro-fluidics applications including supercapacitors, energy harvesters, and sensors. Finally, nanoconfinement of molecules arising from perturbed liquid structure modified hydro-frictional behavior, influencing 2D materials’ use in microchannels. 2D material–liquid interactions will inform future fields of study, including modulation of 2D materials’ chemical reactivity, offering a rich area for research on tuned surface fluid interactions.

    • Peter Snapp
    • Jin Myung Kim
    • SungWoo Nam
    Review Article Open Access
  • An emerging annelated thiophene of benzodithiophenedione (BDD) has exhibited its distinguished photovoltaic performance since its planar molecular structure, low-lying highest occupied molecular orbit (HOMO) level and well self-assembly property. In recent 7 years, BDD-based polymer donor have shown a rapid and incredible advancement by utilizing different acceptor materials. Considering the potentials of BDD-based materials, we summarize the most recent advances in the BDD-based photovoltaic materials and highlight the relations between BDD-based molecular structures and photovoltaic properties.

    • Bing Zheng
    • Lijun Huo
    • Yongfang Li
    Review Article Open Access
  • Metal halide perovskites are extraordinary defect-tolerant semiconductors. A unique structural aspect of perovskites is the octahedral coordination for (B-site) metal ions, unlike other semiconductors that exhibit tetrahedral coordination. This octahedral coordination helped to achieve lanthanide doping in halide perovskite nanocrystals in 2017. Fundamental understanding of material design, luminescence and quantum cutting phenomena in lanthanides (with focus on Yb3+) doped in CsPbX3 (X = Cl, Br, I) and Cs2AgInCl6 nanocrystals are reported. Subsequently, these doped systems are applied for solar energy harvesting and lighting in both visible and near infrared region. This perspective article summarizes everything important that has happened so far in field and discusses about the future research directions.

    • Wasim J. Mir
    • Tariq Sheikh
    • Angshuman Nag
    Review Article Open Access
  • Over the last decade, triboelectric nanogenerator (TENG) has been verified to be an effective way of converting daily mechanical energy into electric power or detecting various stimuli in the external environment. To promote the material researches in TENG, we introduce recent progresses in materials and material designs to improve the power generation and sensing performance. Also, we discuss on the future challenges and suggest possible approaches to solve the challenges.

    • Dong Wook Kim
    • Ju Hyun Lee
    • Unyong Jeong
    Review Article Open Access
  • Zn battery family with a long research history in the human electrochemical power supply has been revived and reevaluated in recent years. However, Zn anode in rechargeable batteries still lacks mature and reliable solutions to support the satisfactory cyclability required for the current versatile applications. In this paper, novel functional electrolytes, modified electrode-electrolyte interfaces and advanced electrode structures for addressing the bottlenecks encountered in rechargeable Zn anodes are reviewed, highlighting the mechanisms and open questions in practical applications.

    • Yaojian Zhang
    • Zheng Chen
    • Guanglei Cui
    Review Article Open Access
  • Since the first report in 1970s, W–Cu composites have attracted extensive attentions owing to their outstanding integrated properties of high hardness, wear resistance and electrical conductivity and low thermal expansion coefficient. This article reviewed recent important progress in the fields of preparation, microstructural characterization, and mechanical and physical properties of W–Cu composites. Particularly, new technologies for microstructure refinement and strategies to enhance the comprehensive performance were summarized and evaluated. The future promising research issues, which may break though the bottleneck of existing performance level of W–Cu composites and facilitate the development of other refractory/non-ferrous metals based nanocomposites, were proposed.

    • Chao Hou
    • Xiaoyan Song
    • Zuoren Nie
    Review Article Open Access
  • The inability to administer oxygen in a controlled and sustained manner into thick artificial tissues has attracted a growing interest towards the design and development of new functional biomaterials. Without a sufficient oxygen supply, tissues suffer from the effects of apoptosis and necrosis. Incorporation of oxygen-releasing materials into scaffolds can help address this challenge. This paper provides an overview of the recent developments and technological advances in engineering oxygen-releasing biomaterials to improve the viability and function of cells and prevent hypoxic tissue death. Recent advances in different types of oxygen-releasing materials, mechanisms of oxygen generation, and their applications are discussed.

    • Sanika Suvarnapathaki
    • Xinchen Wu
    • Gulden Camci-Unal
    Review Article Open Access
  • Stimulus-responsive hydrogels, with biocompatibility, sufficient water content, similarity to extracellular matrices, and responses to specific environmental stimuli, have recently received massive research interest for fabricating bioactuators. The potential of employing these hydrogels that respond to various stimuli (e.g., pH, temperature, light, electricity, and magnetic fields) for actuation purposes has been uncovered by their performances in biosensing, drug delivery, artificial muscle reconstruction, and cell microenvironment engineering. In this review, a material selection of stimulus-responsive hydrogels and a detailed discussion of recent advances in emerging biomedical applications of hydrogel-based bioactuators are proposed. Existing challenges and future prospects are noted as well.

    • Qiang Shi
    • Hao Liu
    • Feng Xu
    Review Article Open Access
  • Overview of up-conversion based condensed phase laser cooling of semiconductor nanostructures. Two critical parameters dictate the likelihood of realizing solid state optical refrigeration: nanostructure emission quantum yield and up-conversion efficiency. This review summarizes both parameters for existing high emission quantum yield semiconductor nanostructures such as CdSe and CsPbBr3. CsPbBr3 nanocrystals, in particular, possess optimal parameters for cooling, namely near unity emission quantum yields and up-conversion efficiencies up to 75%. This makes them promising materials for verifiable demonstrations of condensed phase laser cooling.

    • Shubin Zhang
    • Maksym Zhukovskyi
    • Masaru Kuno
    Review Article Open Access
  • Mass spectrometry, coupled with soft ionization methods, in conjunction with associated techniques such as tandem mass spectrometry, ion mobility and spectroscopies of sorts, has become a powerful tool for the characterization of advanced materials.

    • Papri Chakraborty
    • Thalappil Pradeep
    Review Article Open Access