Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pharmacological targeting of the thrombomodulin–activated protein C pathway mitigates radiation toxicity

Abstract

Tissue damage induced by ionizing radiation in the hematopoietic and gastrointestinal systems is the major cause of lethality in radiological emergency scenarios and underlies some deleterious side effects in patients undergoing radiation therapy1,2. The identification of target-specific interventions that confer radiomitigating activity is an unmet challenge. Here we identify the thrombomodulin (Thbd)–activated protein C (aPC) pathway as a new mechanism for the mitigation of total body irradiation (TBI)-induced mortality. Although the effects of the endogenous Thbd-aPC pathway were largely confined to the local microenvironment of Thbd-expressing cells, systemic administration of soluble Thbd or aPC could reproduce and augment the radioprotective effect of the endogenous Thbd-aPC pathway. Therapeutic administration of recombinant, soluble Thbd or aPC to lethally irradiated wild-type mice resulted in an accelerated recovery of hematopoietic progenitor activity in bone marrow and a mitigation of lethal TBI. Starting infusion of aPC as late as 24 h after exposure to radiation was sufficient to mitigate radiation-induced mortality in these mice. These findings suggest that pharmacologic augmentation of the activity of the Thbd-aPC pathway by recombinant Thbd or aPC might offer a rational approach to the mitigation of tissue injury and lethality caused by ionizing radiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elevated expression of Thbd selects for primitive hematopoietic cells after irradiation in vivo.
Figure 2: Solulin and recombinant aPC confer mitigation of radiation toxicity after TBI.
Figure 3: Mechanisms of the action of toxicity mitigation by soluble Thbd and aPC.
Figure 4: The role of endogenous Thbd in radiation protection.

Similar content being viewed by others

References

  1. Mauch, P. et al. Hematopoietic stem cell compartment: acute and late effects of radiation therapy and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 31, 1319–1339 (1995).

    Article  CAS  Google Scholar 

  2. Kirsch, D.G. et al. p53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis. Science 327, 593–596 (2010).

    Article  CAS  Google Scholar 

  3. Schuller, B.W. et al. Selective irradiation of the vascular endothelium has no effect on the survival of murine intestinal crypt stem cells. Proc. Natl. Acad. Sci. USA 103, 3787–3792 (2006).

    Article  CAS  Google Scholar 

  4. Rotolo, J.A. et al. Regulation of ceramide synthase-mediated crypt epithelium apoptosis by DNA damage repair enzymes. Cancer Res. 70, 957–967 (2010).

    Article  CAS  Google Scholar 

  5. Paris, F. et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293, 293–297 (2001).

    Article  CAS  Google Scholar 

  6. Kustikova, O.S. et al. Retroviral vector insertion sites associated with dominant hematopoietic clones mark “stemness” pathways. Blood 109, 1897–1907 (2007).

    Article  CAS  Google Scholar 

  7. Yu, H. et al. Deletion of Puma protects hematopoietic stem cells and confers long-term survival in response to high-dose gamma-irradiation. Blood 115, 3472–3480 (2010).

    Article  CAS  Google Scholar 

  8. Kanzawa, T. et al. Ionizing radiation induces apoptosis and inhibits neuronal differentiation in rat neural stem cells via the c-Jun NH2-terminal kinase (JNK) pathway. Oncogene 25, 3638–3648 (2006).

    Article  CAS  Google Scholar 

  9. Weiler, H. & Isermann, B.H. Thrombomodulin. J. Thromb. Haemost. 1, 1515–1524 (2003).

    Article  CAS  Google Scholar 

  10. Wang, W., Nagashima, M., Schneider, M., Morser, J. & Nesheim, M. Elements of the primary structure of thrombomodulin required for efficient thrombin-activable fibrinolysis inhibitor activation. J. Biol. Chem. 275, 22942–22947 (2000).

    Article  CAS  Google Scholar 

  11. Esmon, N.L., Owen, W.G. & Esmon, C.T. Isolation of a membrane-bound cofactor for thrombin-catalyzed activation of protein C. J. Biol. Chem. 257, 859–864 (1982).

    CAS  PubMed  Google Scholar 

  12. Esmon, C.T., Esmon, N.L. & Harris, K.W. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J. Biol. Chem. 257, 7944–7947 (1982).

    CAS  PubMed  Google Scholar 

  13. Mosnier, L.O., Zlokovic, B.V. & Griffin, J.H. The cytoprotective protein C pathway. Blood 109, 3161–3172 (2007).

    Article  CAS  Google Scholar 

  14. Weiler, H. Regulation of inflammation by the protein C system. Crit. Care Med. 38, S18–S25 (2010).

    Article  CAS  Google Scholar 

  15. Tanaka, K.A. et al. Soluble thrombomodulin is antithrombotic in the presence of neutralising antibodies to protein C and reduces circulating activated protein C levels in primates. Br. J. Haematol. 132, 197–203 (2006).

    Article  CAS  Google Scholar 

  16. van Iersel, T., Stroissnig, H., Giesen, P., Wemer, J. & Wilhelm-Ogunbiyi, K. Phase I study of Solulin, a novel recombinant soluble human thrombomodulin analogue. Thromb. Haemost. 105, 302–312 (2011).

    Article  CAS  Google Scholar 

  17. Su, E.J. et al. The thrombomodulin analog Solulin promotes reperfusion and reduces infarct volume in a thrombotic stroke model. J. Thromb. Haemost. 9, 1174–1182 (2011).

    Article  CAS  Google Scholar 

  18. Foley, J.H., Rea, C.J., Petersen, K.U., Nesheim, M.E. & Sorensen, B. Solulin increases clot stability in whole blood from humans and dogs with hemophilia. Blood 119, 3622–3628 (2012).

    Article  CAS  Google Scholar 

  19. Mosnier, L.O., Yang, X.V. & Griffin, J.H. Activated protein C mutant with minimal anticoagulant activity, normal cytoprotective activity, and preservation of thrombin activable fibrinolysis inhibitor-dependent cytoprotective functions. J. Biol. Chem. 282, 33022–33033 (2007).

    Article  CAS  Google Scholar 

  20. Kerschen, E. et al. Activated protein C targets CD8+ dendritic cells to reduce the mortality of endotoxemia in mice. J. Clin. Invest. 120, 3167–3178 (2010).

    Article  CAS  Google Scholar 

  21. Mosnier, L.O. et al. Hyperantithrombotic, noncytoprotective Glu149Ala-activated protein C mutant. Blood 113, 5970–5978 (2009).

    Article  CAS  Google Scholar 

  22. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R.C. & Melton, D.A. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002).

    Article  CAS  Google Scholar 

  23. Kent, D.G. et al. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 113, 6342–6350 (2009).

    Article  CAS  Google Scholar 

  24. Balazs, A.B., Fabian, A.J., Esmon, C.T. & Mulligan, R.C. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 107, 2317–2321 (2006).

    Article  CAS  Google Scholar 

  25. Iwasaki, H., Arai, F., Kubota, Y., Dahl, M. & Suda, T. Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver. Blood 116, 544–553 (2010).

    Article  CAS  Google Scholar 

  26. Darrow, A.L. et al. Biological consequences of thrombin receptor deficiency in mice. Thromb. Haemost. 76, 860–866 (1996).

    Article  CAS  Google Scholar 

  27. Iwaki, T., Cruz, D.T., Martin, J.A. & Castellino, F.J. A cardioprotective role for the endothelial protein C receptor in lipopolysaccharide-induced endotoxemia in the mouse. Blood 105, 2364–2371 (2005).

    Article  CAS  Google Scholar 

  28. Xu, J. et al. Extracellular histones are major mediators of death in sepsis. Nat. Med. 15, 1318–1321 (2009).

    Article  CAS  Google Scholar 

  29. Xu, J., Zhang, X., Monestier, M., Esmon, N.L. & Esmon, C.T. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J. Immunol. 187, 2626–2631 (2011).

    Article  CAS  Google Scholar 

  30. Luo, D. et al. Factor XI–deficient mice display reduced inflammation, coagulopathy, and bacterial growth during listeriosis. Infect. Immun. 80, 91–99 (2012).

    Article  CAS  Google Scholar 

  31. Kerschen, E.J. et al. Endotoxemia and sepsis mortality reduction by non-anticoagulant activated protein C. J. Exp. Med. 204, 2439–2448 (2007).

    Article  CAS  Google Scholar 

  32. Ismail, J.A. et al. Immunohistologic labeling of murine endothelium. Cardiovasc. Pathol. 12, 82–90 (2003).

    Article  Google Scholar 

  33. Conway, E.M., Nowakowski, B. & Steiner-Mosonyi, M. Human neutrophils synthesize thrombomodulin that does not promote thrombin-dependent protein C activation. Blood 80, 1254–1263 (1992).

    CAS  PubMed  Google Scholar 

  34. Yerkovich, S.T. et al. Allergen-enhanced thrombomodulin (blood dendritic cell antigen 3, CD141) expression on dendritic cells is associated with a TH2-skewed immune response. J. Allergy Clin. Immunol. 123, 209–216 (2009).

    Article  CAS  Google Scholar 

  35. Weiler-Guettler, H. et al. A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state. J. Clin. Invest. 101, 1983–1991 (1998).

    Article  CAS  Google Scholar 

  36. Weiler, H. et al. Characterization of a mouse model for thrombomodulin deficiency. Arterioscler. Thromb. Vasc. Biol. 21, 1531–1537 (2001).

    Article  CAS  Google Scholar 

  37. Weiler-Guettler, H., Aird, W.C., Husain, M., Rayburn, H. & Rosenberg, R.D. Targeting of transgene expression to the vascular endothelium of mice by homologous recombination at the thrombomodulin locus. Circ. Res. 78, 180–187 (1996).

    Article  CAS  Google Scholar 

  38. Isermann, B. et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat. Med. 13, 1349–1358 (2007).

    Article  CAS  Google Scholar 

  39. Burdelya, L.G. et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320, 226–230 (2008).

    Article  CAS  Google Scholar 

  40. Johnson, S.M. et al. Mitigation of hematologic radiation toxicity in mice through pharmacological quiescence induced by CDK4/6 inhibition. J. Clin. Invest. 120, 2528–2536 (2010).

    Article  CAS  Google Scholar 

  41. Weiler, H. Mouse models of thrombosis: thrombomodulin. Thromb. Haemost. 92, 467–477 (2004).

    Article  CAS  Google Scholar 

  42. Connolly, A.J., Ishihara, H., Kahn, M.L., Farese, R.V. Jr. & Coughlin, S.R. Role of the thrombin receptor in development and evidence for a second receptor. Nature 381, 516–519 (1996).

    Article  CAS  Google Scholar 

  43. Glaser, C.B. et al. Oxidation of a specific methionine in thrombomodulin by activated neutrophil products blocks cofactor activity. A potential rapid mechanism for modulation of coagulation. J. Clin. Invest. 90, 2565–2573 (1992).

    Article  CAS  Google Scholar 

  44. Weisel, J.W., Nagaswami, C., Young, T.A. & Light, D.R. The shape of thrombomodulin and interactions with thrombin as determined by electron microscopy. J. Biol. Chem. 271, 31485–31490 (1996).

    Article  CAS  Google Scholar 

  45. Kennel, S.J., Lankford, T., Hughes, B. & Hotchkiss, J.A. Quantitation of a murine lung endothelial cell protein, P112, with a double monoclonal antibody assay. Lab. Invest. 59, 692–701 (1988).

    CAS  PubMed  Google Scholar 

  46. Modlich, U. et al. Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 108, 2545–2553 (2006).

    Article  CAS  Google Scholar 

  47. Kustikova, O.S. et al. Cell-intrinsic and vector-related properties cooperate to determine the incidence and consequences of insertional mutagenesis. Mol. Ther. 17, 1537–1547 (2009).

    Article  CAS  Google Scholar 

  48. Ross, C.C. et al. Inactivation of thrombomodulin by ionizing radiation in a cell-free system: possible implications for radiation responses in vascular endothelium. Radiat. Res. 169, 408–416 (2008).

    Article  CAS  Google Scholar 

  49. Solis, M.M. et al. Recombinant soluble human thrombomodulin: a randomized, blinded assessment of prevention of venous thrombosis and effects on hemostatic parameters in a rat model. Thromb. Res. 73, 385–394 (1994).

    Article  CAS  Google Scholar 

  50. Gupta, P.K. et al. Development of high-throughput HILIC-MS/MS methodology for plasma citrulline determination in multiple species. Anal. Meth. 3, 1759–1768 (2011).

    Article  CAS  Google Scholar 

  51. Baddeley, A.J., Gundersen, H.J. & Cruz-Orive, L.M. Estimation of surface area from vertical sections. J. Microsc. 142, 259–276 (1986).

    Article  CAS  Google Scholar 

  52. Langberg, C.W. & Hauer-Jensen, M. Optimal interfraction interval to minimize small bowel radiation injury in treatment regimens with two fractions per day: an experimental study in a rat model. Radiother. Oncol. 41, 249–255 (1996).

    Article  CAS  Google Scholar 

  53. Kodell, R.L., Lensing, S.Y., Landes, R.D., Kumar, K.S. & Hauer-Jensen, M. Determination of sample sizes for demonstrating efficacy of radiation countermeasures. Biometrics 66, 239–248 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (grants CA71382 and AI67798 to M.H.-J., AI080557 to H.W., J.Á.F. and H.G., HL31950 and HL052246 to J.H.G., HL44612 to H.W. and CA122023 and AI080421 to D.Z.), the Edward P. Evans Foundation (M.H.-J., D.Z. and H.G.), the Ziegler Family Chair for Research (H.W.) and the Veterans Administration. We thank J. Bailey and V. Summey from the Comprehensive Mouse and Cancer Core at Cincinnati Children's Hospital Medical Center (CCHMC) for their support and services. We are grateful to M. Monestier (Temple University School of Medicine, Philadelphia, Pennsylvania, USA) for the BWA3 antibody, S.J. Kennel (University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, USA) for the antibodies to Thbd (273-34A and 411-201B) and D. Gailani and A. Gruber (Vanderbilt University, Nashville, Tennessee, USA) for providing the 14E11 antibody.

Author information

Authors and Affiliations

Authors

Contributions

H.G. and H.W. designed and performed experiments, and wrote the paper. S.A.P. collected, analyzed and summarized data. E.J.K., I.H., H.P.H.L., J.A.C. and M.A.R. performed experiments. K.J.N. performed experiments and wrote parts of the paper. J.Á.F., A.S. and J.H.G. provided reagents and advised on experimental design. O.K., D.Z. and C.B. advised on experimental design and provided experimental expertise. Q.F. and J.W. performed in vivo studies. L.M.F. advised on experimental design and participated in writing the manuscript. K.-U.P. performed pharmacokinetics studies with Solulin and advised on experimental details. M.H.-J. designed experiments and wrote the paper.

Corresponding author

Correspondence to Hartmut Geiger.

Ethics declarations

Competing interests

K.-U.P. is employed by PAION Deutschland GmbH.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1 and 2 (PDF 2140 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiger, H., Pawar, S., Kerschen, E. et al. Pharmacological targeting of the thrombomodulin–activated protein C pathway mitigates radiation toxicity. Nat Med 18, 1123–1129 (2012). https://doi.org/10.1038/nm.2813

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2813

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research