Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic variation at glucose and insulin trait loci and response to glucose–insulin–potassium (GIK) therapy: the IMMEDIATE trial

Abstract

The mechanistic effects of intravenous glucose, insulin and potassium (GIK) in cardiac ischemia are not well understood. We conducted a genetic sub-study of the Immediate Myocardial Metabolic Enhancement During Initial Assessment and Treatment in Emergency care (IMMEDIATE) Trial to explore effects of common and rare glucose and insulin-related genetic loci on initial to 6-h and 6- to 12-h change in plasma glucose and potassium. We identified 27 NOTCH2/ADAM30 and 8 C2CD4B variants conferring a 40–57% increase in glucose during the first 6 h of infusion (P<5.96 × 10−6). Significant associations were also found for ABCB11 and SLC30A8 single-nucleotide polymorphisms (SNPs) and glucose responses, and an SEC61A2 SNP with a potassium response to GIK. These studies identify genetic factors that may impact the metabolic response to GIK, which could influence treatment benefits in the setting of acute coronary syndromes (ACS).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Grossman AN, Opie LH, Beshansky JR, Ingwall JS, Rackley CE, Selker HP . Glucose-insulin-potassium revived: current status in acute coronary syndromes and the energy-depleted heart. Circulation 2013; 127: 1040–1048.

    Article  PubMed  Google Scholar 

  2. Selker HP, Raitt MH, Schmid CH, Laks MM, Beshansky JR, Griffith JL et al. Time-dependent predictors of primary cardiac arrest in patients with acute myocardial infarction. Am J Cardiol 2003; 91: 280–286.

    Article  PubMed  Google Scholar 

  3. Selker HP, Beshansky JR, Griffith JL, D'Agostino RB, Massaro JM, Udelson JE et al. Study design for the immediate myocardial metabolic enhancement during initial assessment and treatment in emergency care (IMMEDIATE) trial: a double-blind randomized controlled trial of intravenous glucose, insulin, and potassium for acute coronary syndromes in emergency medical services. Am Heart J 2012; 163: 315–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Selker HP, Beshansky JR, Sheehan PR, Massaro JM, Griffith JL, D'Agostino RB et al. Out-of-hospital administration of intravenous glucose-insulin-potassium in patients with suspected acute coronary syndromes: the IMMEDIATE randomized controlled trial. JAMA 2012; 307: 1925–1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hindorff LA, Junkins HA, Hall PN, Mehta JP, Manolio TA A catalog of published genome-wide association studies. Available at: www.genome.gov/gwastudies; accessed July 2013.

  6. Huyghe JR, Jackson AU, Fogarty MP, Buchkovich ML, Stancakova A, Stringham HM et al. Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion. Nat Genet 2013; 45: 197–201.

    Article  CAS  PubMed  Google Scholar 

  7. Voight BF, Kang HM, Ding J, Palmer CD, Sidore C, Chines PS et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet 2012; 8: e1002793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grove ML, Yu B, Cochran BJ, Haritunians T, Bis JC, Taylor KD et al. Best practices and joint calling of the humanexome beadchip: the charge consortium. PLoS ONE 2013; 8: e68095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goldstein JI, Crenshaw A, Carey J, Grant GB, Maguire J, Fromer M et al. Zcall: a rare variant caller for array-based genotyping: genetics and population analysis. Bioinformatics 2012; 28: 2543–2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

    Article  CAS  PubMed  Google Scholar 

  11. Manning AK, LaValley M, Liu CT, Rice K, An P, Liu Y et al. Meta-analysis of gene-environment interaction: Joint estimation of snp and snp x environment regression coefficients. Genet Epidemiol 2011; 35: 11–18.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X . Rare-variant association testing for sequencing data with the sequence Kernel association test. Am J Hum Genet 2011; 89: 82–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet 2012; 91: 224–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li J, Ji L . Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb) 2005; 95: 221–227.

    Article  CAS  Google Scholar 

  15. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008; 40: 638–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grarup N, Andersen G, Krarup NT, Albrechtsen A, Schmitz O, Jorgensen T et al. Association testing of novel type 2 diabetes risk alleles in the jazf1, cdc123/camk1d, tspan8, thada, adamts9, and notch2 loci with insulin release, insulin sensitivity, and obesity in a population-based sample of 4,516 glucose-tolerant middle-aged Danes. Diabetes 2008; 57: 2534–2540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Warton K, Foster NC, Gold WA, Stanley KK . A novel gene family induced by acute inflammation in endothelial cells. Gene 2004; 342: 85–95.

    Article  CAS  PubMed  Google Scholar 

  18. Yamauchi T, Hara K, Maeda S, Yasuda K, Takahashi A, Horikoshi M et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at ube2e2 and c2cd4a-c2cd4b. Nat Genet 2010; 42: 864–868.

    Article  CAS  PubMed  Google Scholar 

  19. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010; 42: 105–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saxena R, Hivert MF, Langenberg C, Tanaka T, Pankow JS, Vollenweider P et al. Genetic variation in gipr influences the glucose and insulin responses to an oral glucose challenge. Nat Genet 2010; 42: 142–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boesgaard TW, Grarup N, Jorgensen T, Borch-Johnsen K, Hansen T, Pedersen O . Variants at dgkb/tmem195, adra2a, glis3 and c2cd4b loci are associated with reduced glucose-stimulated beta cell function in middle-aged Danish people. Diabetologia 2010; 53: 1647–1655.

    Article  CAS  PubMed  Google Scholar 

  22. Grarup N, Overvad M, Sparso T, Witte DR, Pisinger C, Jorgensen T et al. The diabetogenic vps13c/c2cd4a/c2cd4b rs7172432 variant impairs glucose-stimulated insulin response in 5,722 non-diabetic Danish individuals. Diabetologia 2011; 54: 789–794.

    Article  CAS  PubMed  Google Scholar 

  23. Rose CS, Grarup N, Krarup NT, Poulsen P, Wegner L, Nielsen T et al. A variant in the g6pc2/abcb11 locus is associated with increased fasting plasma glucose, increased basal hepatic glucose production and increased insulin release after oral and intravenous glucose loads. Diabetologia 2009; 52: 2122–2129.

    Article  CAS  PubMed  Google Scholar 

  24. Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, Thorleifsson G et al. Variants in mtnr1b influence fasting glucose levels. Nat Genet 2009; 41: 77–81.

    Article  CAS  PubMed  Google Scholar 

  25. Chimienti F, Devergnas S, Favier A, Seve M . Identification and cloning of a beta-cell-specific zinc transporter, znt-8, localized into insulin secretory granules. Diabetes 2004; 53: 2330–2337.

    Article  CAS  PubMed  Google Scholar 

  26. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007; 445: 881–885.

    Article  CAS  PubMed  Google Scholar 

  27. Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008; 359: 2220–2232.

    Article  CAS  PubMed  Google Scholar 

  28. Ingelsson E, Langenberg C, Hivert MF, Prokopenko I, Lyssenko V, Dupuis J et al. Detailed physiologic characterization reveals diverse mechanisms for novel genetic loci regulating glucose and insulin metabolism in humans. Diabetes 2010; 59: 1266–1275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Watson HR, Wunderley L, Andreou T, Warwicker J, High S . Reorientation of the first signal-anchor sequence during potassium channel biogenesis at the sec61 complex. Biochem J 2013; 456: 297–309.

    Article  CAS  PubMed  Google Scholar 

  30. Kang HP, Yang X, Chen R, Zhang B, Corona E, Schadt EE et al. Integration of disease-specific single nucleotide polymorphisms, expression quantitative trait loci and coexpression networks reveal novel candidate genes for type 2 diabetes. Diabetologia 2012; 55: 2205–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Genetic Ancillary Study was funded by the National Institutes of Health (NIH) grant from National Heart, Lung and Blood Institute (NHLBI) (R01HL090997). This work was also supported by National Center for Research Resources Grant Number UL1RR025752, now the National Center for Advancing Translational Sciences, NIH Grant Number Ul1 TR000073. The IMMEDIATE Trial was funded by the NIH cooperative agreement from NHLBI (U01HL077821, U01HL077823 and U01HL077826).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Peter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, K., Zhou, Y., Beshansky, J. et al. Genetic variation at glucose and insulin trait loci and response to glucose–insulin–potassium (GIK) therapy: the IMMEDIATE trial. Pharmacogenomics J 15, 55–62 (2015). https://doi.org/10.1038/tpj.2014.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.41

This article is cited by

Search

Quick links