Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Heritable and non-genetic factors as variables of pharmacologic phenotypes in lymphoblastoid cell lines

Abstract

Publicly available genetic and expression data on lymphoblastoid cell lines (LCLs) make them a unique resource for understanding the genetic underpinnings of pharmacological outcomes and disease. LCLs have been used for pharmacogenomic discovery and validation of clinical findings associated with drug response. However, variation in cellular growth rate, baseline Epstein–Barr virus (EBV) copy number and ATP levels can all be confounders in such studies. Our objective is to better define confounding variables that affect pharmacological end points in LCLs. To this end, we evaluated the effect of these three variables on drug-induced cytotoxicity in LCLs. The drugs evaluated included daunorubicin, etoposide, carboplatin, cisplatin, cytarabine, pemetrexed, 5′-deoxyfluorouridine, vorinostat, methotrexate, 6-mercaptopurine, and 5-fluorouracil. Baseline ATP or EBV copy number were not significantly correlated with cellular growth rate or drug-induced cytotoxicity. In contrast, cellular growth rate and drug-induced cytotoxicity were significantly, directly related for all drugs except vorinostat. Importantly, cellular growth rate is under appreciable genetic influence (h2=0.30–0.39) with five suggestive linkage regions across the genome. Not surprisingly, a percentage of SNPs that significantly associate with drug-induced cytotoxicity also associate with cellular growth rate (P0.0001). Studies using LCLs for pharmacologic outcomes should therefore consider that a portion of the genetic variation explaining drug-induced cytotoxicity is mediated via heritable effects on growth rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

5′-DFUR:

5′-deoxyfluorouridine

5-FU:

5-fluorouracil

AraC:

cytarabine

ASN:

Asian

ATP:

adenosine tri-phosphate

CEPH:

Centre d'Etude du Polymorphisme Humain

CEU:

Caucasians

DNA:

deoxyribonucleic acid

EBV:

Epstein–Barr virus

h2:

heritability

HapMap:

International HapMap Project

LOD:

logarithm of odds

LCL/s:

lymphoblastoid cell line/s

QTDT:

Quantitative Transmission Disequilibrium Test

RNA:

ribonucleic acid

SNP/s:

single nucleotide polymorphism/s

YRI:

Yoruba

References

  1. Gipps EM, Kidson C . Cellular radiosensitivity: expression of an MS susceptibility gene? Neurology 1984; 34: 808–811.

    Article  CAS  PubMed  Google Scholar 

  2. Jen KY, Cheung VG . Transcriptional response of lymphoblastoid cells to ionizing radiation. Genome Res 2003; 13: 2092–2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC et al. A genome-wide association study of global gene expression. Nat Genet 2007; 39: 1202–1207.

    Article  CAS  PubMed  Google Scholar 

  4. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS et al. Genetic analysis of genome-wide variation in human gene expression. Nature 2004; 430: 743–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 2007; 315: 848–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG . Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet 2007; 39: 226–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Storey JD, Madeoy J, Strout JL, Wurfel M, Ronald J, Akey JM . Gene-expression variation within and among human populations. Am J Hum Genet 2007; 80: 502–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C et al. Population genomics of human gene expression. Nat Genet 2007; 39: 1217–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang W, Duan S, Kistner EO, Bleibel WK, Huang RS, Clark TA et al. Evaluation of genetic variation contributing to differences in gene expression between populations. Am J Hum Genet 2008; 82: 631–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dolan ME, Newbold KG, Nagasubramanian R, Wu X, Ratain MJ, Cook EH et al. Heritability and linkage analysis of sensitivity to cisplatin-induced cytotoxicity. Cancer Res 2004; 64: 4353–4356.

    Article  CAS  PubMed  Google Scholar 

  11. Watters JW, Kraja A, Meucci MA, Province MA, McLeod HL . Genome-wide discovery of loci influencing chemotherapy cytotoxicity. Proc Natl Acad Sci USA 2004; 101: 11809–11814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shukla SJ, Duan S, Badner JA, Wu X, Dolan ME . Susceptibility loci involved in cisplatin-induced cytotoxicity and apoptosis. Pharmacogenet Genomics 2008; 18: 253–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duan S, Bleibel WK, Huang RS, Shukla SJ, Wu X, Dolan ME . Mapping genes that contribute to daunorubicin-induced cytotoxicity. Cancer Res 2007; 67: 5425–5433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang RS, Duan S, Bleibel WK, Kistner EO, Zhang W, Clark TA et al. A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity. Proc Natl Acad Sci USA 2007; 104: 9758–9763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang RS, Duan S, Shukla SJ, Kistner EO, Clark TA, Chen TX et al. Identification of genetic variants contributing to Cisplatin-induced cytotoxicity by use of a genome-wide approach. Am J Hum Genet 2007; 81: 427–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang RS, Kistner EO, Bleibel WK, Shukla SJ, Dolan ME . Effect of population and gender on chemotherapeutic agent-induced cytotoxicity. Mol Cancer Ther 2007; 6: 31–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hartford CM, Duan S, Delaney SM, Mi S, Kistner EO, Lamba JK et al. Populuation-specific genetic variants important in susceptibility to cytarabine arabinoside cytotoxicity. Blood 2009; 113: 2145–2153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li L, Fridley B, Kalari K, Jenkins G, Batzler A, Safgren S et al. Gemcitabine and cytosine arabinoside cytotoxicity: association with lymphoblastoid cell expression. Cancer Res 2008; 68: 7050–7058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones TS, Yang W, Evans WE, Relling MV . Using HapMap tools in pharmacogenomic discovery: the thiopurine methyltransferase polymorphism. Clin Pharmacol Ther 2007; 81: 729–734.

    Article  CAS  PubMed  Google Scholar 

  20. Welsh MM, Mangravite L, Medina MW, Tantisira K, Zhang W, Huang RS et al. Pharmacogenomic discovery using cell-based models. Pharmacol Rev 2009; 61: 413–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choy E, Yeleknsy R, Bonakdar S, Plenge RM, Saxena R, De Jager PL et al. Genetic analysis of human traits in vitro: drug response and gene expression in lymphoblastoid cell lines. PLoS Genet 2008; 4: e1000287.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Almasy L, Blangero J . Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 1998; 62: 1198–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  PubMed  Google Scholar 

  24. Abecasis GR, Cardon LR, Cookson WO . A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000; 66: 279–292.

    Article  CAS  PubMed  Google Scholar 

  25. Tveit KM, Fodstad O, Pihl A . The usefulness of human tumor cell lines in the study of chemosensitivity. A study of malignant melanomas. Int J Cancer 1981; 28: 403–408.

    Article  CAS  PubMed  Google Scholar 

  26. Shukla SJ, Duan S, Wu X, Badner JA, Kasza K, Dolan ME . Whole-genome approach implicates CD44 in cellular resistance to carboplatin. Hum Genomics 2009; 3: 128–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Galmarini CM, Mackey JR, Dumontet C . Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 2001; 15: 875–890.

    Article  CAS  PubMed  Google Scholar 

  28. Rabik CA, Njoku MC, Dolan ME . Inactivation of O6-alkylguanine DNA alkyltransferase as a means to enhance chemotherapy. Cancer Treat Rev 2006; 32: 261–276.

    Article  CAS  PubMed  Google Scholar 

  29. Walko CM, Lindley C . Capecitabine: a review. Clin Ther 2005; 27: 23–44.

    Article  CAS  PubMed  Google Scholar 

  30. Meresse P, Dechaux E, Monneret C, Bertounesque E . Etoposide: discovery and medicinal chemistry. Curr Med Chem 2004; 11: 2443–2466.

    Article  CAS  PubMed  Google Scholar 

  31. Wang B, Perchellet EM, Wang Y, Tamura M, Hua DH, Perchellet JP . Antitumor triptycene bisquoinones: a novel synthetic class of dual inhibitors of DNA topoisomerase I and II activities. Anticancer Drugs 2003; 14: 503–514.

    Article  CAS  PubMed  Google Scholar 

  32. Bleibel WK, Duan S, Huang RS, Kistner EO, Shukla SJ, Wu X et al. Identification of genomic regions contributing to etoposide-induced cytototoxicity. Hum Genet 2009; 125: 173–180.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Pharmacogenetics of Anticancer Agents Research Group by the National Institute of Health/National Institute of General Medical Sciences Grant U01GM61393, data deposits are supported by UO1GM61374 (http://pharmgkb.org/) and NIH/NCI Breast SPORE P50 CA125183. We acknowledge Dr Sunita J Shukla, Dr Christine M Hartford, Ms Bridget E McIlwee, and Mr Wasim Bleibel for results from their cytotoxicity growth inhibition experiments and Mr Steven J Stark for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M E Dolan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stark, A., Zhang, W., Mi, S. et al. Heritable and non-genetic factors as variables of pharmacologic phenotypes in lymphoblastoid cell lines. Pharmacogenomics J 10, 505–512 (2010). https://doi.org/10.1038/tpj.2010.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2010.3

Keywords

This article is cited by

Search

Quick links