Techniques and instrumentation articles within Nature Communications

Featured

  • Article
    | Open Access

    Electrostrictors are materials that develop mechanical strain proportional to the square of the applied electric field. Here authors report. Zr-doped-Ceria as a new lead-free electrostrictive material with a similar electrostriction coefficient to the best electrostrictor material currently in use.

    • Maxim Varenik
    • , Boyuan Xu
    •  & Igor Lubomirsky
  • Article
    | Open Access

    Phase transition dynamics are an important concern in the wide applications of metal halide perovskites. Here authors apply low-dose imaging technique to reveal the phase transition dynamics of CsPbI3 during in-situ heating process with atomic resolution.

    • Mengmeng Ma
    • , Xuliang Zhang
    •  & Boyuan Shen
  • Article
    | Open Access

    Next-generation light sources and fast detectors enable unparalleled materials characterization, but increased data rates and compute needs preclude real-time analysis. Here, Babu et al. leverage high-performance computing and AI@Edge to achieve real-time, low-dose imaging on streaming data at 2 KHz.

    • Anakha V. Babu
    • , Tao Zhou
    •  & Mathew J. Cherukara
  • Article
    | Open Access

    The large-scale production of crystalline porous materials remains a challenge. Here the authors report a general approach of high-pressure homogenization that can realize large-scale synthesis of crystalline porous materials under benign conditions.

    • Xiongli Liu
    • , An Wang
    •  & Shengqian Ma
  • Article
    | Open Access

    Solid-state materials synthesis relies on effective precursor design. Here, the authors introduce an algorithm that combines ab-initio computations with insights gained from experimental outcomes to efficiently optimize the selection of precursors.

    • Nathan J. Szymanski
    • , Pragnay Nevatia
    •  & Gerbrand Ceder
  • Article
    | Open Access

    In lithium-metal batteries, it is vital to quantify electrolyte side reactions occurring at the metal anode surface. Here, the authors introduce an electrochemical technique, using a series of small-step lithium deposition followed by open circuit voltage analysis, to accurately measure these reactions.

    • Burak Aktekin
    • , Luise M. Riegger
    •  & Jürgen Janek
  • Article
    | Open Access

    The traditional way of beating metals to improve their properties is not practical to 3D printed parts with intricate geometry. Here, the authors demonstrate how to program microstructural modifications of metals site-specifically during 3D printing to tune their properties.

    • Shubo Gao
    • , Zhi Li
    •  & Matteo Seita
  • Article
    | Open Access

    Supported CoOx catalysts display higher reactivities towards CO oxidation, yet, corresponding catalytically active phases are still unclear, especially under reaction conditions. Here, by means of in-situ APXPS and ResPES, the authors demonstrate that the topographic restructuring and chemical restructuring occur on these CoOx working catalysts, and also highlight the unique catalytic properties of Co3+ sites.

    • Hao Chen
    • , Lorenz J. Falling
    •  & Miquel Salmeron
  • Article
    | Open Access

    Here, the authors investigate frequently observed variations in data between different electrochemical cells using in-situ electronic/electrochemical measurements, developing a vertical microcell strategy to eliminate the conductance issue and enhance measurement reproducibility.

    • Hang Xia
    • , Xiaoru Sang
    •  & Yongmin He
  • Article
    | Open Access

    The design of programmable artificial photosynthetic cells is hindered by the requirement for cofactor generation for the biocatalytic module. Here, the authors report on the design of artificial photosynthetic cells using biotic–abiotic thylakoid–CdTe as hybrid energy modules, which enhance the regeneration of NADPH, NADH and ATP cofactors without external supplements by promoting proton-coupled electron transfer.

    • Feng Gao
    • , Guangyu Liu
    •  & Yujie Xiong
  • Article
    | Open Access

    Electron holography and microscopy have long been used to map static electric and magnetic fields. Here, authors establish Lorentz Microscopy of Optical Fields, a new technique that uses the deflection and interference of an electron beam to obtain phase-resolved images of nanoscale optical fields.

    • John H. Gaida
    • , Hugo Lourenço-Martins
    •  & Claus Ropers
  • Article
    | Open Access

    Physical unclonable functions (PUFs) normally ensure authentication of small physical objects. Here, instead, the authors observe that also rooms and buildings can serve as PUFs. They apply this insight to monitor the integrity of enclosed environments, such as art galleries, bank vaults, or data centers.

    • Johannes Tobisch
    • , Sébastien Philippe
    •  & Ulrich Rührmair
  • Article
    | Open Access

    Correlated disorder can lead to phenomena that are inaccessible to ordered structures. Here the authors show that local order principles can be directly derived from the three-dimensional difference pair distribution function based on the single crystal diffuse scattering in 3D electron diffraction data from nanometre sized crystals.

    • Ella Mara Schmidt
    • , Paul Benjamin Klar
    •  & Lukas Palatinus
  • Article
    | Open Access

    In this work, authors demonstrate a fast and versatile microprinting technique to produce high-performance and customizable piezoelectric elements by employing a conductive spiny disc to electrostatically trigger instability to the liquid-air interface of the ink.

    • Xuemu Li
    • , Zhuomin Zhang
    •  & Zhengbao Yang
  • Article
    | Open Access

    A critical step to enable practical structural superlubricity (SSL) applications is to enable high throughput to both fabrication and performance evaluation. Here, the authors demonstrate an automated system for efficient and multiple SSL materials transfer and tribological measurement.

    • Li Chen
    • , Cong Lin
    •  & Ming Ma
  • Article
    | Open Access

    Crystal dissolution has been predominately viewed as a process of ion-by-ion detachment into a surrounding solvent. Here, the authors report an alternative mechanism of dissolution by particle detachment.

    • Guomin Zhu
    • , Benjamin A. Legg
    •  & James J. De Yoreo
  • Article
    | Open Access

    Under-liquid joining of metals has far-reaching implications for energy storage, space exploration, offshore mining and defense. Here, the authors report an alternative method to join metallic glasses firmly under water, seawater, flammable alcohol and even cryogenic liquid nitrogen.

    • Luyao Li
    • , Xin Li
    •  & Jiang Ma
  • Article
    | Open Access

    Nanodiamonds containing NV centers are promising electron paramagnetic resonance sensors, however applications are hindered by their random orientation. Qin et al. propose a new protocol that makes the technique insensitive to the sensor’s orientation and present a proof-of-principle in situ demonstration.

    • Zhuoyang Qin
    • , Zhecheng Wang
    •  & Jiangfeng Du
  • Article
    | Open Access

    Chiral materials with strong and tunable chiroptical activities are highly desirable. Here, the authors employ an AI-guided robotic platform to fully execute a cyclic process to perform inverse design and fabricate chiral films with target chiroptical performance.

    • Yifan Xie
    • , Shuo Feng
    •  & Gang Zou
  • Article
    | Open Access

    Observing the evolution of the solid electrolyte interphase on SiOx-based electrodes in Li-ion batteries is challenging. Here, authors use three-dimensional tomography to visualize the growth of the interphase on single SiOx particles and propose a mechanical confinement strategy to prevent aging.

    • Guoyu Qian
    • , Yiwei Li
    •  & Feng Pan
  • Article
    | Open Access

    Radiolysis is known for damaging crystals. Here, using STEM, researchers observed radiolysis-driven bond-breakage, atomic movements, & crystal restructuring in rutile TiO2, and proposed a “2-step rolling” model of building blocks. These results open possibilities for constructive use of radiolysis.

    • Silu Guo
    • , Hwanhui Yun
    •  & K. Andre Mkhoyan
  • Article
    | Open Access

    The mechanical and thermal properties of semicrystalline polymers are governed by the hierarchical structure comprising lamellar crystals, but the tilt angles of the molecular chains in the lamellae and their origin remains controversial. Here, the authors report a direct determination of molecular chain orientation in the lamellar crystals of high-density polyethylene using electron-diffraction based imaging with nanometre-scale positional resolution.

    • Shusuke Kanomi
    • , Hironori Marubayashi
    •  & Hiroshi Jinnai
  • Article
    | Open Access

    Analysis of experimental data in condensed matter is often challenging due to system complexity and slow character of physical simulations. The authors propose a framework that combines machine learning with theoretical calculations to enable real-time analysis for electron, neutron, and x-ray spectroscopies.

    • Sathya R. Chitturi
    • , Zhurun Ji
    •  & Joshua J. Turner
  • Article
    | Open Access

    Here, the authors correlate the position and spectral emission properties of single photon emitters in monolayer WSe2 with the surrounding local strain potential by combining deep-subwavelength photoluminescence imaging and atomic force microscopy, providing insights on the microscopic mechanisms behind the formation of the quantum emitters.

    • Artem N. Abramov
    • , Igor Y. Chestnov
    •  & Vasily Kravtsov
  • Article
    | Open Access

    Demand for data recovery from monolithic storage devices is high but current methods are inefficient. Here, authors develop a robotic OCT-guided inspection and microsurgery method, minimizing damage to device and enhancing data recovery efficiency.

    • Bin He
    • , Yuxin Zhang
    •  & Ning Zhang
  • Article
    | Open Access

    Carbon is a key support for metal-catalyzed acetylene hydrochlorination to vinyl chloride but its role remains elusive. Here, the authors, by means of operando spectroscopy, demonstrate the co-catalytic function of neighboring carbon and isolated metal atoms, constituting the active ensemble.

    • Vera Giulimondi
    • , Andrea Ruiz-Ferrando
    •  & Javier Pérez-Ramírez
  • Article
    | Open Access

    Modern microscopes can image a sample with sub-Angstrom and sub-picosecond resolutions, but this often requires analysis of tremendously large datasets. Here, the authors demonstrate that an autonomous experiment can yield over a 70% reduction in dataset size while still producing high-fidelity images of the sample.

    • Saugat Kandel
    • , Tao Zhou
    •  & Mathew J. Cherukara
  • Comment
    | Open Access

    Adopting standardized and reliable methodologies to accurately measure particle removal efficiency when developing fibrous materials for controlling airborne contamination is crucial. Here, the authors recommend best practices for experimental assessments and reporting to ensure a reliable evaluation of new airborne particle filtration media and technologies.

    • Paolo Tronville
    • , Vincenzo Gentile
    •  & Jesus Marval
  • Article
    | Open Access

    Kagome materials, such as CsV3Sb5, a rich array of correlated phase, including a time-reversal symmetry breaking phase, which could possibly be the result of loop currents. Attempts to verify this with magneto-optical measurements have yielded mixed results. Here, Farhang et al show that the magneto-optical signals are due to specular optical rotation. ‘

    • Camron Farhang
    • , Jingyuan Wang
    •  & Jing Xia
  • Article
    | Open Access

    By carefully inducing twists or lattice stacking offsets between two adjacent van der Waals crystals, a superlattice potential can be introduced. This Moire lattice offers an incredibly rich physics, ranging from superconductivity to exotic magnetism, depending on van der Waals materials in question. Here, Du et al. study the magnetic domains in twisted CrI3, and show that despite this domain structure, spin fluctuations are spatially homogenous.

    • Mengqi Huang
    • , Zeliang Sun
    •  & Chunhui Rita Du
  • Article
    | Open Access

    Electron detectors used in electron microscope are often unable to provide quantified information without calibration. Here, by combining existing detectors with hardware signal processing, the authors demonstrated that the detectors can be run in an electron counting mode enabling imaging at faster speeds, at lower electron doses, and reduces the barrier to quantitative measurements.

    • Jonathan J. P. Peters
    • , Tiarnan Mullarkey
    •  & Lewys Jones
  • Article
    | Open Access

    pH alterations are a hallmark of many pathologies including cancer and kidney disease. Here the authors describe [1,5- 13 C2]Z-OMPD as a probe for hyperpolarized 13C-MRI with good pH sensitivity and hyperpolarization properties which combined with tailored MRI protocols allow sub-minute imaging of pH, renal perfusion and filtration simultaneously.

    • Martin Grashei
    • , Pascal Wodtke
    •  & Franz Schilling
  • Article
    | Open Access

    The authors present crackling noise microscopy, a method for measurement of the crackling of individual nanoscale features based on AFM nanoindentation. They use it to investigate crackling noise and avalanches in the domains and domain walls of ferroelectric materials.

    • Cam-Phu Thi Nguyen
    • , Peggy Schoenherr
    •  & Jan Seidel
  • Article
    | Open Access

    Understanding the mechanical properties of materials is critical in many fields, from soft hydrogels to biological tissues, yet current measurement methods lack the spatial and time resolution to characterize samples with complex structures. Here, the authors show non-invasive elastography technique offering advancements in resolution, sensitivity, and measurement frequencies.

    • Xu Feng
    • , Guo-Yang Li
    •  & Seok-Hyun Yun
  • Article
    | Open Access

    Manufacturing metallized arrays of 3D nanoarchitectures is generally limited by existing lithographic methods. Here, by manipulating applied electric and flow fields, authors demonstrate fast 3D nanoprinting of nanostructured arrays of multiple materials and geometries over millimetre-scale areas.

    • Bingyan Liu
    • , Shirong Liu
    •  & Jicheng Feng
  • Article
    | Open Access

    Real-time monitoring of coatings erosive wear is critical to mitigate safety and financial concerns in many applications. Here, authors show a non-destructive inspection system with AI-enabled microwave resonators and a smart monitoring circuitry to identify and estimate wear depth and rate of eroded layers.

    • Vishal Balasubramanian
    • , Omid Niksan
    •  & Mohammad H. Zarifi
  • Article
    | Open Access

    Electrospray deposition is a promising technique for depositing functional coatings at the micro-/nano-scale. Here, the authors establish the necessary conditions for high efficiency electrospray deposition of small targets, establishing promise as an alternative to other conformal coating methods.

    • Sarah H. Park
    • , Lin Lei
    •  & Jonathan P. Singer