Physical sciences articles within Nature Physics

Featured

  • News & Views |

    An experimental demonstration that the expansion of ultracold atoms in three dimensions can be frozen by disorder provides fertile ground for studies of metal–insulator transitions in disordered systems — including those with interacting particles.

    • Robin Kaiser
  • Letter |

    The Cooper pairs of conventional superconductors exhibit a nodeless s-wave symmetry, and most unconventional superconductors, including cuprates and heavy-fermion materials, exhibit nodal d-wave pairing. In contrast to both, angle-resolved photoemission spectroscopy measurements indicate that the iron-based superconductor BaFe2(As0.7P0.3)2 exhibits an unusual nodal s-wave pairing.

    • Y. Zhang
    • , Z. R. Ye
    •  & D. L. Feng
  • Research Highlights |

    • Alison Wright
  • Research Highlights |

    • Abigail Klopper
  • News & Views |

    Geomagnetic storms driven by the solar wind can cause the flux of high-energy electrons in the Earth's Van Allen belts to rapidly fall. Analysis of data obtained during one such event from multiple spacecraft located at different altitudes in the magnetosphere reveals just where these electrons go.

    • Mary K. Hudson
  • Editorial |

    Two big-science projects — the Large Hadron Collider and the Planck satellite — are set to deliver major results in the coming year.

  • News & Views |

    Squeezed states push the limits of quantum measurement precision, but observing them is never straightforward. In spin-1 Bose–Einstein condensates, an elegant algebra reveals squeezed states that would otherwise go unnoticed.

    • Austen Lamacraft
  • Letter |

    Squeezed states—which permit precision beyond the scope of Heisenberg’s uncertainty relation—are well established for spin-1/2 particles. Now an elegant demonstration of squeezing in spin-1 condensates generalizes the criteria for squeezed states to higher spin dimensions.

    • C. D. Hamley
    • , C. S. Gerving
    •  & M. S. Chapman
  • Letter |

    Magnetic reconnection is a process by which the field lines of a magnetized plasma undergo dramatic realignment, releasing large amounts of energy. Large-scale simulations of reconnection events in the Earth’s magnetosphere suggest that this process takes place over much greater distances than previously expected.

    • J. Egedal
    • , W. Daughton
    •  & A. Le
  • Letter |

    An experiment demonstrates that the motion of so-called skyrmions—topologically quantized magnetic whirls—causes an emergent electric field that inherits the topological quantization of the skyrmions and is directly visible in the Hall effect.

    • T. Schulz
    • , R. Ritz
    •  & A. Rosch
  • News & Views |

    Confining liquid 3He in porous silica aerogel prepared with strong anisotropy stabilizes a state of axial superfluidity.

    • Vladimir P. Mineev
  • Letter |

    The degree to which an electrical current is spin polarized is usually determined by how easily it travels across an interface with a magnetic contact. By using nonlinear interactions between spin and charge in graphene, the polarization of spin currents can be measured without magnetic contacts.

    • Ivan J. Vera-Marun
    • , Vishal Ranjan
    •  & Bart J. van Wees
  • Letter |

    Liquid 3He in silica aerogel exhibits no trace of the chiral superfluid phase present in bulk 3He. Stretching the aerogel axially introduces an anisotropy that stabilizes the chiral phase, supporting a transition to a new disordered phase at low temperatures.

    • J. Pollanen
    • , J. I. A. Li
    •  & J. A. Sauls
  • News & Views |

    Mechanical oscillations of microscopic resonators have recently been observed in the quantum regime. This idea could soon be extended from localized vibrations to travelling waves thanks to a sensitive probe of so-called surface acoustic waves.

    • Aashish Clerk
  • News & Views |

    A single photon can alter the shape of a molecule. It is now shown that quantum effects can play an important role in this change leading to conformation relaxation rates hundreds of times faster than previously expected.

    • Shaul Mukamel
  • Article |

    Mechanical oscillations of microscopic resonators have recently been observed in the quantum regime. This idea could soon be extended from localized vibrations to travelling waves thanks to a sensitive probe of so-called surface acoustic waves.

    • Martin V. Gustafsson
    • , Paulo V. Santos
    •  & Per Delsing
  • Article |

    A molecule can alter shape as it absorbs a photon. It is now shown that quantum effects can play an important role in this change leading to conformation rates hundreds of times faster than previously expected.

    • J. Clark
    • , T. Nelson
    •  & G. Lanzani
  • Letter |

    One proposed explanation of unconventional superconductivity involves describing it in terms of a crossover from a conventional superconducting state to a Bose–Einstein condensate state. Angle-resolved photoelectron measurements of an iron chalcogenide superconductor could provide evidence for such crossover behaviour.

    • Y. Lubashevsky
    • , E. Lahoud
    •  & A. Kanigel
  • News & Views |

    Two-qubit entanglement can be preserved by partially measuring the qubits to leave them in a 'lethargic' state. The original state is restored using quantum measurement reversal after the qubits have travelled through a decoherence channel.

    • Alexander N. Korotkov
  • News & Views |

    Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.

    • Oskar Vafek
  • News & Views |

    In quantum control there is an inherent tension between high fidelity requirements and the need for speed to avoid decoherence. A direct comparison of quantum control protocols at these two extremes indicates where the sweet spot may lie.

    • Lloyd C. L. Hollenberg
  • Article |

    Superfluorescence—the emission of coherent light from an initially incoherent collection of excited dipoles—is now identified in a semiconductor. Laser-excited electron–hole pairs spontaneously polarize and then abruptly decay to produce intense pulses of light.

    • G. Timothy Noe II
    • , Ji-Hee Kim
    •  & Junichiro Kono
  • Letter |

    Geomagnetic storms driven by the solar wind can cause a dramatic drop in the flux of high-energy electrons in the Earth’s outer Van Allen belt. Analysis of data obtained during such an event by three different sets of spacecraft suggests that these electrons are directed into space rather than lost to the atmosphere.

    • Drew L. Turner
    • , Yuri Shprits
    •  & Vassilis Angelopoulos
  • Letter |

    Measurements of Hanbury Brown and Twiss correlations in atomic gases near the Bose–Einstein condensation threshold reveal strong signatures of interactions between the constituent atoms, and establish such correlation measurements as a sensitive probe for the quantum properties of matter-wave sources.

    • A. Perrin
    • , R. Bücker
    •  & J. Schmiedmayer
  • News & Views |

    Brillouin scattering of light is now shown to attenuate the Brownian motion of microscopic acoustic resonators. This electrostrictive phenomenon could be a useful complement to the ponderomotive and photothermal effects that can optically control optomechanical systems.

    • Ivan Favero