Lipids articles within Nature Chemistry

Featured

  • Article |

    Cellular membranes contain numerous lipids, and efforts to understand the biological functions of individual lipids demand approaches for controlled modulation of membrane composition in situ. Now, click chemistry-based directed evolution of a microbial phospholipase within mammalian cells affords an editor for optogenetic, targeted modification of phospholipids in cell membranes.

    • Reika Tei
    • , Saket R. Bagde
    •  & Jeremy M. Baskin
  • Article |

    The β1-adrenergic receptor (β1AR) contains empty cavities in its preactive conformation, which disappear in the active one. Now, using X-ray crystallography of xenon-derivatized β1AR crystals, a cavity has been shown to be in contact with the cholesterol-binding pocket. Monitoring the binding of a cholesterol analogue in solution has explained the function of cholesterol as a negative allosteric modulator of β1AR.

    • Layara Akemi Abiko
    • , Raphael Dias Teixeira
    •  & Stephan Grzesiek
  • Perspective |

    Droplet interface bilayers (DIBs) are a type of artificial bilayer that can act as cell membrane mimics. This Perspective surveys how DIBs can be used to mimic key cellular features (such as bilayer asymmetry) and processes (such as drug movement), and discusses challenges that need to be overcome to enable DIBs to reach their full potential as biomimetic model membranes.

    • Elanna B. Stephenson
    • , Jaime L. Korner
    •  & Katherine S. Elvira
  • Article |

    It is unclear how phospholipid membranes formed on the early Earth, as modern cells synthesize the phospholipid constituents of their membranes enzymatically. Now, a combination of ion pairing and self-assembly has enabled transacylation of lysophospholipids with acyl donors in water, affording a variety of membrane-forming natural diacylphospholipids in high yields.

    • Luping Liu
    • , Yike Zou
    •  & Neal K. Devaraj
  • Article |

    Two chemical probes, YnF and YnGG, that enable the identification of prenylated peptides and global analysis of protein prenylation using quantitative chemical proteomics have now been developed. Prenylation dynamics in response to pharmacological inhibition of prenyl-transferase enzymes were also studied. As a final demonstration, defective Rab prenylation in a model of the retinal degenerative disease choroideremia was also quantified.

    • Elisabeth M. Storck
    • , Julia Morales-Sanfrutos
    •  & Edward W. Tate
  • Article |

    Lipid membranes—which separate cells and organelles from their environment—experience tension during various cell processes; however, measuring membrane tension is notoriously difficult. Now, a new fluorescent, mechanosensitive membrane probe called FliptR has been developed. FliptR enables simple, direct membrane tension measurements in cellular and artificial membranes.

    • Adai Colom
    • , Emmanuel Derivery
    •  & Aurélien Roux
  • News & Views |

    Lipid bilayers form the thin and floppy membranes that define the boundary of compartments such as cells. Now, a method to control the shape and size of bilayers using DNA nanoscaffolds has been developed. Such designer materials advance synthetic biology and could find use in membrane research.

    • Stefan Howorka
  • Article |

    Cell-sized asymmetric giant lipid vesicles containing a very small amount of organic solvent have now been formed via inhomogeneous break-up of a lipid microtube that was generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles were used to investigate the dynamic responses of lipid molecules and the effect of asymmetry on biochemical reactions.

    • Koki Kamiya
    • , Ryuji Kawano
    •  & Shoji Takeuchi
  • Article |

    Precise control of vesicle size is highly desirable both for basic biochemical research and biomedical applications. Now, monodispersed sub-100-nm vesicles with predefined sizes have been produced using a method based on membrane self-assembly within a DNA-nanostructure guide.

    • Yang Yang
    • , Jing Wang
    •  & Chenxiang Lin
  • Article |

    Lipid bilayers containing porphyin-phospholipid that is chelated with cobalt have been shown to capture his-tagged proteins and peptides. This method offers a simple route for functionalizing pre-formed lipid bilayers without disrupting their integrity. Using this approach homing peptides were attached to cargo-loaded liposomes to enable tumour targeting, and an HIV-derived protein fragment elicited antibodies following binding to immunogenic liposomes.

    • Shuai Shao
    • , Jumin Geng
    •  & Jonathan F. Lovell
  • News & Views |

    In their natural environment, membrane proteins are surrounded by lipids, but the effect that the lipids have on the proteins is not easy to assess. Now, controlling the extent of delipidation has enabled the study of these interactions.

    • Sophie R. Harvey
    •  & Vicki H. Wysocki
  • Article |

    Defining the lipid composition that exists around a membrane protein complex in natural bilayers is a challenging task. Now, key lipids that are important for the structure and function of an ABC transporter have been revealed by systematically removing layers of lipids, and using mass spectrometry to monitor those that remained closely associated with the membrane protein.

    • Chérine Bechara
    • , Anne Nöll
    •  & Carol V. Robinson
  • Article |

    The biosynthesis of lipid mediators has not previously been identified in mitochondria. Here, polyunsaturated cardiolipins are shown to be oxidized in the mitochondria by cytochrome c. Subsequent hydrolysis of these oxygenated species generates a variety of oxygenated fatty acids as well as non-oxygenated and oxygenated lyso-cardiolipins. These reactions represent a new biosynthetic pathway for the production of lipid mediators.

    • Yulia Y. Tyurina
    • , Samuel M. Poloyac
    •  & Valerian E. Kagan
  • Article |

    Cellular membrane lipids play key roles in cell regulation. Here, an environmentally sensitive fluorophore is attached to a protein that binds to a key signalling lipid to produce a membrane lipid sensor. This strategy allows sensitive, quantitative, spatiotemporal imaging of the lipid concentration in mammalian cells.

    • Youngdae Yoon
    • , Park J. Lee
    •  & Wonhwa Cho