Ferromagnetism articles within Nature Physics

Featured

  • Research Briefing |

    As counterparts to optical frequency combs, magnonic frequency combs could have broad applications if their initiation thresholds were low and the ‘teeth’ of the comb plentiful. Progress has now been made through exploiting so-called exceptional points to enhance the nonlinear coupling between magnons and produce wider magnonic frequency combs.

  • Article |

    Frequency combs, which are important for applications in precision spectroscopy, depend on material nonlinearities for their function, which can be hard to engineer. Now an approach combining magnons and exceptional points is shown to be effective.

    • Congyi Wang
    • , Jinwei Rao
    •  & Wei Lu
  • Article |

    Inducing coherent interactions between distinct magnon modes—collective excitations of magnetic order—has been challenging. A canted antiferromagnet has demonstrated coherent magnon upconversion induced by terahertz laser pulses.

    • Zhuquan Zhang
    • , Frank Y. Gao
    •  & Keith A. Nelson
  • Article
    | Open Access

    The transition from a metastable state to the ground state in classical many-body systems is mediated by bubble nucleation. This transition has now been experimentally observed in a quantum setting using coupled atomic superfluids.

    • A. Zenesini
    • , A. Berti
    •  & G. Ferrari
  • Article |

    Switching of magnetic behaviour is one of the main ideas that drives spintronics. Now, magnetic switching via spin-orbit torque is shown in a moiré bilayer, introducing a platform for spintronic applications.

    • C. L. Tschirhart
    • , Evgeny Redekop
    •  & A. F. Young
  • Letter |

    The anomalous Hall effect can signify that a material has a spontaneous magnetic order. Now, twisted bilayer graphene shows this effect at half filling, suggesting that the ground state is valley-polarized.

    • Chun-Chih Tseng
    • , Xuetao Ma
    •  & Matthew Yankowitz
  • Article |

    Topological states characterized by Chern numbers are usually considered to be the global properties of a material. Now a spatial patchwork of different Chern insulator states is imaged in twisted bilayer graphene.

    • Sameer Grover
    • , Matan Bocarsly
    •  & Eli Zeldov
  • Letter |

    Ultrashort light pulses generate nanometre-scale wavepackets of magnons that propagate coherently and at high speed in an antiferromagnet. This pushes antiferromagnetic magnonics forward as a future platform for information processing.

    • J. R. Hortensius
    • , D. Afanasiev
    •  & A. D. Caviglia
  • Letter |

    Three-dimensional structures of vortex loops in a bulk micromagnet GdCo2 have been observed using X-ray magnetic nanotomography. The cross-section of these loops consists of a vortex–antivortex pair stabilized by the dipolar interaction.

    • Claire Donnelly
    • , Konstantin L. Metlov
    •  & Sebastian Gliga
  • Article |

    Inertial dynamics are observed in a ferromagnet. Specifically, a nutation is seen on top of the usual spin precession that has a lifetime on the order of 10 picoseconds.

    • Kumar Neeraj
    • , Nilesh Awari
    •  & Stefano Bonetti
  • Letter |

    By incorporating a ferromagnetic layer in their superconductor–semiconductor nanowire hybrid device, Vaitiekėnas et al. show that zero-bias peaks—potential Majorana bound states—can be induced without an external magnetic field.

    • S. Vaitiekėnas
    • , Y. Liu
    •  & C. M. Marcus
  • Letter |

    Composite fermions can be tuned to very low effective density in a clean two-dimensional electron gas, which allows the formation of a Bloch ferromagnet.

    • Md Shafayat Hossain
    • , Tongzhou Zhao
    •  & M. Shayegan
  • News & Views |

    High-magnetic-field experiments on the recently discovered unconventional superconductor UTe2 are consistent with p-wave pairing arising while time-reversal symmetry is broken. In turn, this suggests that this material is a candidate for a chiral superconductor that may be exploited for topological quantum computing.

    • Marc Janoschek
  • News & Views |

    The ferromagnetism of iron has been known for millennia. Now a rotational form of spontaneous crystallographic ordering has been discovered. This touches upon fundamental questions about the relation between symmetry, structure and order in matter.

    • Manfred Fiebig
  • Article |

    A spectral study on a ferromagnet/superconductor heterostructure reveals the interaction between the spin-wave excitations in a magnetically ordered system (magnons) and the magnetic flux quanta formed in a superconductor (fluxons).

    • O. V. Dobrovolskiy
    • , R. Sachser
    •  & A. V. Chumak
  • Letter |

    Experiments on the Shakti geometry of artificial spin ice show that its low-energy excitations are topologically protected, and that an emergent classical topological order influences the ergodicity and equilibration of this nanomagnetic system.

    • Yuyang Lao
    • , Francesco Caravelli
    •  & Peter Schiffer
  • Article |

    The Gilbert damping constant, a fundamental parameter to describe magnetization dynamics, is an isotropic scalar for most magnetic materials. Now, at a metal/semiconductor interface, the emergence of anisotropic magnetic damping has been observed.

    • L. Chen
    • , S. Mankovsky
    •  & C. H. Back
  • Commentary |

    Introduced originally to mimic the unusual, frustrated behaviour of spin ice pyrochlores, artificial spin ice can be realized in odd, dedicated geometries that open the door to new manifestations of a higher level of frustration.

    • Cristiano Nisoli
    • , Vassilios Kapaklis
    •  & Peter Schiffer
  • Letter |

    Confinement plays an important role in many-body physics from high energy to condensed matter. New results show that it strongly affects the non-equilibrium dynamics after a quantum quench with possible implications from ultracold atoms to QCD.

    • Marton Kormos
    • , Mario Collura
    •  & Pasquale Calabrese
  • Article |

    Studies of supercurrent phenomena, such as superconductivity and superfluidity, are usually restricted to cryogenic temperatures, but evidence suggests that a magnon supercurrent can be excited in a Bose–Einstein magnon condensate at room temperature.

    • Dmytro A. Bozhko
    • , Alexander A. Serga
    •  & Burkard Hillebrands
  • Letter |

    Materials with low magnetic damping are important for a range of applications but are typically insulating, which limits their use. Thanks to a unique feature of the band structure, similar levels of damping can now be achieved in a metallic alloy.

    • Martin A. W. Schoen
    • , Danny Thonig
    •  & Justin M. Shaw
  • Research Highlights |

    • Luke Fleet
  • Letter |

    A comprehensive experimental investigation of a PrPtAl single crystal concludes that it displays modulated magnetic order driven by quantum critical phenomena.

    • Gino Abdul-Jabbar
    • , Dmitry A. Sokolov
    •  & Andrew D. Huxley
  • Letter |

    Understanding the motion of magnetic skyrmions is essential if they are to be used as information carriers in devices. It is now shown that topological confinement endows the skyrmions with an unexpectedly large mass, which plays a key role in their dynamics.

    • Felix Büttner
    • , C. Moutafis
    •  & S. Eisebitt
  • News & Views |

    The origins of the spin Hall effect are difficult to probe, largely because experiments typically characterize electrons near the Fermi surface. Quantum tunnelling spectroscopy now provides access to its energy dependence.

    • Kyoung-Whan Kim
    •  & Hyun-Woo Lee
  • Letter |

    The spin Hall effect, which arises from the spin–orbit interaction, is expected to be energy dependent, but experiments typically only characterize electrons near the Fermi surface. A tunnelling spectroscopy method has now been developed to probe the energy dependence.

    • Luqiao Liu
    • , Ching-Tzu Chen
    •  & J. Z. Sun
  • News & Views |

    The Dzyaloshinskii–Moriya interaction — the mechanism behind weak ferromagnetism — has been difficult to probe experimentally. Now, significant progress is reported that has important implications for a wide range of magnetic phenomena.

    • Chong Der Hu
  • Letter |

    Oxygen-mediated superexchange (or Dzyaloshinskii–Moriya) interactions result in weak ferromagnetism in oxides. A method based on the interference of synchrotron X-ray radiation is now shown to enable the determination of the sign of the Dzyaloshinskii–Moriya interaction in the prototypical weak ferromagnet iron borate.

    • V. E. Dmitrienko
    • , E. N. Ovchinnikova
    •  & M. I. Katsnelson
  • News & Views |

    Most multiferroic materials are antiferromagnets, yet ferromagnetism can be induced in bismuth ferrite by substrate-induced strain. Strain is now shown to afford useful control of the orientation of magnetic moments in the multiferroics.

    • Annemieke M. Mulders
  • News & Views |

    Small metal-free organic molecules on an epitaxial graphene monolayer are shown to receive a local magnetic moment from the substrate. This magnetic moment survives when many molecules combine to form a layer, with some indication of long-range ferromagnetic order.

    • Friedrich Reinert
  • Letter |

    Doping a topological insulator with manganese makes it magnetic. Moreover, decreasing the concentration of Dirac fermions in a Mn-doped topological insulator with an electric field increases the strength of its magnetic characteristics—a trait that could be valuable to the use of topological insulators in the development of spintronics.

    • Joseph G. Checkelsky
    • , Jianting Ye
    •  & Yoshinori Tokura
  • Letter |

    The penetration of a superconducting current from a superconductor into a half-metallic ferromagnet is usually forbidden. Resonances in the conductance spectra of superconductor/half-metal heterostructures suggest this restriction is lifted by the occurrence of unconventional equal-spin Andreev reflection.

    • C. Visani
    • , Z. Sefrioui
    •  & Javier E. Villegas
  • Article |

    The extra states sometimes observed in graphene’s quantum Hall characteristics have been presumed to be the result of broken SU(4) symmetry. Magnetotransport measurements of high-quality graphene in a tilted magnetic field finally prove this is indeed the case.

    • A. F. Young
    • , C. R. Dean
    •  & P. Kim
  • Article |

    Spin transfer torque—the transfer of angular momentum from a spin-polarized current to a ferromagnet’s magnetization—has already found commercial application in memory devices, but the underlying physics is still not fully understood. Researchers now demonstrate the crucial role played by the polarization of the laser light that generates the current; a subtle effect only evident when isolated from other influences such as heating.

    • P. Němec
    • , E. Rozkotová
    •  & T. Jungwirth