Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Topological Kerr effects in two-dimensional magnets with broken inversion symmetry

Abstract

The whorls of localized moments in chiral magnetic structures, such as skyrmions, lead to a quantized topological charge, which may make them useful as next-generation information bits. So far, the most reliable way to detect the existence of skyrmions is by using the topological Hall effect, which stems from electron scattering by the emergent magnetic field manifesting the topological charge. Here we employ two-dimensional magnets to establish a magneto-optical hallmark of skyrmions, which we call the topological Kerr effect, using the recently discovered ferromagnet CrVI6 as a material platform. The Kerr angle hysteresis loop of this non-centrosymmetric system exhibits two antisymmetric bumps that are absent in the centrosymmetric CrI3 and VI3. We develop a minimal model to further identify the bumps as direct manifestations of the topological charge, thereby providing a magneto-optical fingerprint of skyrmions with broader applicability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and DM interaction of CrVI6.
Fig. 2: Preparation and characterization of bulk and thin-film samples of CrVI6.
Fig. 3: Magneto-optical Kerr effect measurements and TKE in CrVI6.
Fig. 4: Simulated magneto-optical responses and TKE on a CrVI6 lattice with DMI.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The Spirit code and manual are available at https://spirit-code.github.io/. Codes for reproducing the simulation results are available from the corresponding author upon reasonable request.

References

  1. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  ADS  Google Scholar 

  2. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  ADS  Google Scholar 

  3. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  ADS  Google Scholar 

  4. Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  5. Tokura, Y. & Kanazawa, N. Magnetic skyrmion materials. Chem. Rev. 121, 2857 (2021).

    Article  Google Scholar 

  6. Back, C. et al. The 2020 skyrmionics roadmap. J. Phys. D: Appl. Phys. 53, 363001 (2020).

    Article  ADS  Google Scholar 

  7. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).

    Article  ADS  Google Scholar 

  8. Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573–2576 (2001).

    Article  ADS  Google Scholar 

  9. Bruno, P., Dugaev, V. K. & Taillefumier, M. Topological Hall effect and Berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004).

    Article  ADS  Google Scholar 

  10. Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    Article  ADS  Google Scholar 

  11. Kurumaji, T. et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science 365, 914–918 (2019).

    Article  ADS  Google Scholar 

  12. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  ADS  Google Scholar 

  13. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  14. Huang, S. X. & Chien, C. L. Extended skyrmion phase in epitaxial FeGe(111) thin films. Phys. Rev. Lett. 108, 267201 (2012).

    Article  ADS  Google Scholar 

  15. Nayak, A. K. et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548, 561–566 (2017).

    Article  ADS  Google Scholar 

  16. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  ADS  Google Scholar 

  17. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  ADS  Google Scholar 

  18. Tian, S. et al. Ferromagnetic van der Waals crystal VI3. J. Am. Chem. Soc. 141, 5326–5333 (2019).

    Article  Google Scholar 

  19. Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  ADS  Google Scholar 

  20. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  ADS  Google Scholar 

  21. Zhang H., Cui P., Xu X. & Zhang Z. A family tree of two-dimensional magnetic materials with tunable topological properties. Preprint at https://doi.org/10.48550/arXiv.2112.10924 (2021).

  22. Fayazi Y., Jacobsson L. & Gustafsson F. First Principles Studies of 2D Magnets. BSc thesis, Uppasala Univ. (2022).

  23. Zhang, H., Yang, W., Cui, P., Xu, X. & Zhang, Z. Prediction of monolayered ferromagnetic CrMnI6 as an intrinsic high-temperature quantum anomalous Hall system. Phys. Rev. B 102, 115413 (2020).

    Article  ADS  Google Scholar 

  24. Zhang, S. et al. Giant Dzyaloshinskii–Moriya interaction, strong XXZ-type biquadratic coupling, and bimeronic excitations in the two-dimensional CrMnI6 magnet. npj Quantum Mater 8, 38 (2023).

    Article  ADS  Google Scholar 

  25. Moriya, T. New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228–230 (1960).

    Article  ADS  Google Scholar 

  26. Powalla, L. et al. Seeding and emergence of composite skyrmions in a van der Waals magnet. Adv. Mater. 35, 2208930 (2023).

    Article  Google Scholar 

  27. Wang, X. R., Hu, X.-C. & Sun, Z.-Z. Topological equivalence of stripy states and skyrmion crystals. Nano Lett. 23, 3954–3962 (2023).

    Article  ADS  Google Scholar 

  28. Wang, H. et al. Characteristics and temperature-field-thickness evolutions of magnetic domain structures in van der Waals magnet Fe3GeTe2 nanolayers. Appl. Phys. Lett. 116, 192403 (2020).

    Article  ADS  Google Scholar 

  29. Lu, E. et al. Analytic theory for Néel skyrmion size, accounting for finite film thickness. J. Magn. Magn. Mater. 584, 171044 (2023).

    Article  Google Scholar 

  30. Adams, T. et al. Long-wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3. Phys. Rev. Lett. 108, 237204 (2012).

    Article  ADS  Google Scholar 

  31. Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).

    Article  ADS  Google Scholar 

  32. Bhowmick, T. K., De, A. & Lake, R. K. High figure of merit magneto-optics from interfacial skyrmions on topological insulators. Phys. Rev. B 98, 024424 (2018).

    Article  ADS  Google Scholar 

  33. Sorn, S., Yang, L. & Paramekanti, A. Resonant optical topological Hall conductivity from skyrmions. Phys. Rev. B 104, 134419 (2021).

    Article  ADS  Google Scholar 

  34. Martin, I. & Batista, C. D. Itinerant electron-driven chiral magnetic ordering and spontaneous quantum Hall effect in triangular lattice models. Phys. Rev. Lett. 101, 156402 (2008).

    Article  ADS  Google Scholar 

  35. Mera Acosta, C., Yuan, L., Dalpian, G. M. & Zunger, A. Different shapes of spin textures as a journey through the Brillouin zone. Phys. Rev. B 104, 104408 (2021).

    Article  ADS  Google Scholar 

  36. Weyl, H. Elektron und Gravitation. I. Z. Physik 56, 330–352 (1929).

    Article  ADS  Google Scholar 

  37. Šabani, D., Bacaksiz, C. & Milošević, M. V. Ab initio methodology for magnetic exchange parameters: generic four-state energy mapping onto a Heisenberg spin Hamiltonian. Phys. Rev. B 102, 014457 (2020).

    Article  ADS  Google Scholar 

  38. Gilbert, T. L. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40, 3443–3449 (2004).

    Article  ADS  Google Scholar 

  39. Müller, G. P. et al. Spirit: multifunctional framework for atomistic spin simulations. Phys. Rev. B 99, 224414 (2019).

    Article  ADS  Google Scholar 

  40. Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34–42 (2020).

    Article  ADS  Google Scholar 

  41. Park, T.-E. et al. Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures. Phys. Rev. B 103, 104410 (2021).

    Article  ADS  Google Scholar 

  42. Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).

    Article  ADS  Google Scholar 

  43. Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).

    Article  Google Scholar 

  44. Xiao, J., Zangwill, A. & Stiles, M. D. Spin-transfer torque for continuously variable magnetization. Phys. Rev. B 73, 054428 (2006).

    Article  ADS  Google Scholar 

  45. Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    Article  ADS  Google Scholar 

  46. Kim, M. H. et al. Determination of the infrared complex magnetoconductivity tensor in itinerant ferromagnets from Faraday and Kerr measurements. Phys. Rev. B 75, 214416 (2007).

    Article  ADS  Google Scholar 

  47. Valdés Aguilar, R. et al. Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3. Phys. Rev. Lett. 108, 087403 (2012).

    Article  ADS  Google Scholar 

  48. Feng, W., Guo, G.-Y., Zhou, J., Yao, Y. & Niu, Q. Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn3X (X = Rh, Ir, Pt). Phys. Rev. B 92, 144426 (2015).

    Article  ADS  Google Scholar 

  49. Feng, W. et al. Topological magneto-optical effects and their quantization in noncoplanar antiferromagnets. Nat. Commun. 11, 118 (2020).

    Article  ADS  Google Scholar 

  50. Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018).

    Article  ADS  Google Scholar 

  51. Liu, J., Singh, A., Kuerbanjiang, B., Barnes, C. H. W. & Hesjedal, T. Kerr effect anomaly in magnetic topological insulator superlattices. Nanotechnology 31, 434001 (2020).

    Article  Google Scholar 

  52. Bartram, F. M. et al. Anomalous Kerr effect in SrRuO3 thin films. Phys. Rev. B 102, 140408 (2020).

    Article  ADS  Google Scholar 

  53. Kato, Y. D., Okamura, Y., Hirschberger, M., Tokura, Y. & Takahashi, Y. Topological magneto-optical effect from skyrmion lattice. Nat. Commun. 14, 5416 (2023).

    Article  ADS  Google Scholar 

  54. Zhang, Y. et al. Glovebox-assisted magnetic force microscope for studying air-sensitive samples in a cryogen-free magnet. Rev. Sci. Instrum. 95, 013701 (2024).

    Article  ADS  Google Scholar 

  55. Depondt, P. & Mertens, F. G. Spin dynamics simulations of two-dimensional clusters with Heisenberg and dipole–dipole interactions. J. Phys. Condens. Matter 21, 336005 (2009).

    Article  Google Scholar 

  56. Chubykalo, O., Hannay, J. D., Wongsam, M., Chantrell, R. W. & Gonzalez, J. M. Langevin dynamic simulation of spin waves in a micromagnetic model. Phys. Rev. B 65, 184428 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Gao, M. Tian, H. Du, J. Li, X. Yu, J. Wrachtrup, Q. Sun, Y. Zhang, Y. Wang, X. Wang and many other colleagues from their groups for various suggestions and efforts on potential direct detection of skyrmions in the newly synthesized magnet of CrVI6. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11574316, 11722435, 11804210, 11904350, 11974323, 12374458, U2032218, 12274276, 51627901 and U1932216), the Innovation Programme for Quantum Science and Technology (Grant No. 2021ZD0302800), the Strategic Priority Research Programme of Chinese Academy of Sciences (CAS) (Grant No. XDB0510200), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY170000), the Anhui Provincial Natural Science Foundation (Grant. No. 2008085QA30) and National Synchrotron Radiation Laboratory (KY2060000177). C.L. and Z.S. gratefully acknowledge financial support from the National Key R&D Programme of China (Grant Nos. 2021YFA1600200, 2017YFA0303603 and 2023YFA1607701), the Plan for Major Provincial Science & Technology Project (Grant No. 202003a05020018), the Key Research Programme of Frontier Sciences, CAS (Grant No. QYZDB-SSW-SLH011), and the Users with Excellence Programme of Hefei Science Center, CAS (Grant No. 2021HSC-UE009). A portion of this work was performed on the Steady High Magnetic Field Facilities, High Magnetic Field Laboratory, CAS, and supported by the High Magnetic Field Laboratory of Anhui Province. This research was also partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. conceived the central idea and directed the project. H.Z., P.C., X.X. and Z.Z. predicted the CrVI6 monolayer as a new 2D magnet. X.L. and S.Z. performed theoretical modelling and analysis. Ying Zhang synthesized the samples and fabricated the devices for MOKE measurements under supervision of B.X. F.H. and R.C. performed atomic-force-microscopy characterization of the thickness of CrVI6 flakes. C.L. and De Hou performed MOKE measurements under supervision of Z.S. Yuchen Zhang and W.M. performed MFM imaging under supervision of Q.L. T.L., T.M., C.K., W.Z. and X.X. performed various syntheses and characterizations of CrI3 and VI3 crystals, devised methods for protection of the CrVI6 samples at varying Cr/V ratios, and carried out subsequent electrical transport measurements. Dazhi Hou contributed to the conceptual development. All authors contributed to the interpretation of the data. X.L., S.Z. and Z.Z. wrote the paper with input from all the authors.

Corresponding authors

Correspondence to Zhigao Sheng, Bin Xiang or Zhenyu Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–3, Notes 1–3, Figs. 1–13 and Refs. 1–10.

Source data

Source Data Fig. 2

Measured and simulated XRD, magnetization-temperature data and magnetization hysteresis loop of a CrVI6 flake.

Source Data Fig. 3

Kerr rotation angle data of CrIV6 measured at different temperatures.

Source Data Fig. 4

Magnetization hysteresis loop data from LLG simulation; optical Hall conductivity and Kerr rotation angle hysteresis loops from tight-binding calculations; snapshot spin configurations from LLG simulations in Vector Field File Format (.ovf).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, C., Zhang, Y. et al. Topological Kerr effects in two-dimensional magnets with broken inversion symmetry. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02465-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing