Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emergence of anisotropic Gilbert damping in ultrathin Fe layers on GaAs(001)

Abstract

As a fundamental parameter in magnetism, the phenomenological Gilbert damping constant α determines the performance of many spintronic devices. For most magnetic materials, α is treated as an isotropic parameter entering the Landau–Lifshitz–Gilbert equation. However, could the Gilbert damping be anisotropic? Although several theoretical approaches have suggested that anisotropic α could appear in single-crystalline bulk systems, experimental evidence of its existence is scarce. Here, we report the emergence of anisotropic magnetic damping by exploring a quasi-two-dimensional single-crystalline ferromagnetic metal/semiconductor interface—that is, a Fe/GaAs(001) heterojunction. The observed anisotropic damping shows twofold C2v symmetry, which is expected from the interplay of interfacial Rashba and Dresselhaus spin–orbit interaction, and is manifested by the anisotropic density of states at the Fe/GaAs (001) interface. This discovery of anisotropic damping will enrich the understanding of magnetization relaxation mechanisms and can provide a route towards the search for anisotropic damping at other ferromagnetic metal/semiconductor interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Typical d.c. voltage spectra induced by ferromagnetic resonance at the Fe/GaAs(001) interface.
Fig. 2: Magnetic-field-angle dependence of the linewidth.
Fig. 3: Microwave-frequency dependence of linewidth along various crystallographic orientations.
Fig. 4: Magnetic-field-angle and Fe-thickness dependence of damping.

Similar content being viewed by others

References

  1. Kamberský, V. On ferromagnetic resonance damping in metals. Czech. J. Phys. B 26, 1366–1383 (1976).

    Article  ADS  Google Scholar 

  2. Thonig, D. & Henk, J. Gilbert damping tensor within the breathing Fermi surface model: anisotropy and non-locality. New. J. Phys. 16, 013032 (2014).

    Article  ADS  Google Scholar 

  3. Gilmore, K., Idzerda, Y. U. & Stiles, M. D. Identification of the dominant precession-damping mechanism in Fe, Co, and Ni by first-principles calculations. Phys. Rev. Lett. 99, 027204 (2007).

    Article  ADS  Google Scholar 

  4. Brataas, A., Tserkovnyak, Y. & Bauer, G. E. W. Scattering theory of Gilbert damping. Phys. Rev. Lett. 101, 037207 (2008).

    Article  ADS  Google Scholar 

  5. Liu, Y., Starikov, A. A., Yuan, Z. & Kelly, P. J. First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder. Phys. Rev. B 84, 014412 (2011).

    Article  ADS  Google Scholar 

  6. Mankovsky, S., Ködderitzsch, D., Woltersdorf, G. & Ebert, H. First-principles calculation of the Gilbert damping parameter via the linear response formalism with application to magnetic transition metals and alloys. Phys. Rev. B 87, 014430 (2013).

    Article  ADS  Google Scholar 

  7. Turek, I. et al. Nonlocal torque operators in ab initio theory of the Gilbert damping in random ferromagnetic alloys. Phys. Rev. B 92, 214407 (2015).

    Article  ADS  Google Scholar 

  8. Garate, I. & MacDonald, A. Gilbert damping in conducting ferromagnets. II. Model tests of the torque-correction formula. Phys. Rev. B 79, 064404 (2009).

    Article  ADS  Google Scholar 

  9. Mizukami, S. et al. Long-lived ultrafast spin precession in manganese alloys films with a large perpendicular magnetic anisotropy. Phys. Rev. Lett. 106, 117201 (2011).

    Article  ADS  Google Scholar 

  10. Schoen, M. A. W. et al. Ultra-low magnetic damping of a metallic ferromagnet. Nat. Phys. 12, 839–842 (2016).

    Article  Google Scholar 

  11. Oogane, M. et al. Gilbert magnetic damping constant of epitaxially grown Co-based Heusler alloy thin films. Appl. Phys. Lett. 96, 252501 (2010).

    Article  ADS  Google Scholar 

  12. Oogane, M. et al. Magnetic damping in ferromagnetic thin films. Jpn. J. Appl. Phys. 45, 3889–3891 (2006).

    Article  ADS  Google Scholar 

  13. He, P. et al. Quadratic scaling of intrinsic Gilbert damping with spin-orbital coupling in L10 FePdPt films: experiments and ab initio calculations. Phys. Rev. Lett. 110, 077203 (2013).

    Article  ADS  Google Scholar 

  14. Bhagat, S. M. & Lubitz, P. Temperature variation of ferromagnetic relaxation in the 3d transition metals. Phys. Rev. B 10, 179–185 (1974).

    Article  ADS  Google Scholar 

  15. Safonov, V. L. Tensor form of magnetic damping. J. Appl. Phys. 91, 8653–8655 (2002).

    Article  ADS  Google Scholar 

  16. Steiauf, D. & Fähnle, M. Damping of spin dynamics in nanostructures: An ab initio study. Phys. Rev. B 72, 064450 (2005).

    Article  ADS  Google Scholar 

  17. Seib, J., Steiauf, D. & Fähnle, M. Linewidth of ferromagnetic resonance for systems with anisotropic damping. Phys. Rev. B 79, 092418 (2009).

    Article  ADS  Google Scholar 

  18. Gilmore, K. & Stiles, M. D. Anisotropic damping of the magnetization dynamics in Ni, Co, and Fe. Phys. Rev. B 81, 174414 (2010).

    Article  ADS  Google Scholar 

  19. Meckenstock, R. et al. Anisotropic Gilbert damping in epitaxial Fe films on InAs (001). J. Mag. Mag. Mater. 272–276, 1203–1204 (2004).

    Article  ADS  Google Scholar 

  20. Zhai, Y. et al. A study on ferromagnetic resonance linewidth of single crystalline ultrathin Fe film grown on GaAs substrate. J. Appl. Phys. 101, 09D120 (2007).

    Article  Google Scholar 

  21. Yilgin, R. et al. Anisotropic intrinsic damping constant of epitaxial Co2MnSi Heusler alloy films. Jpn. J. Appl. Phys. 46, L205–L208 2007).

    Article  Google Scholar 

  22. Kasatani, Y. & Nozaki, Y. Crystallographic anisotropy of the intrinsic Gilbert damping for single-crystalline Fe film. J. Magn. Soc. Jpn. 39, 221–226 (2015).

    Article  Google Scholar 

  23. Zhu, H. J. et al. Room-temperature spin injection from Fe to GaAs. Phys. Rev. Lett. 87, 016601 (2001).

    Article  ADS  Google Scholar 

  24. Chen, L. et al. Robust spin-orbit torque and spin-galvanic effect at the Fe/GaAs (001) interface at room temperature. Nat. Commun. 7, 13802 (2016).

    Article  ADS  Google Scholar 

  25. Gmitra, M. et al. Magnetic control of spin-orbit fields: A first-principles study of Fe/GaAs junctions. Phys. Rev. Lett. 111, 036603 (2013).

    Article  ADS  Google Scholar 

  26. Hupfauer, T. et al. Emergence of spin-orbit fields in magnetotransport of quasi-two-dimensional iron on gallium arsenide. Nat. Commun. 6, 7374 (2015).

    Article  Google Scholar 

  27. Buchner, M. et al. Anisotropic polar magneto-optic Kerr effect of ultrathin Fe/GaAs (001) layers due to interfacial spin-orbit interaction. Phys. Rev. Lett. 117, 157202 (2016).

    Article  ADS  Google Scholar 

  28. Fang, D. et al. Spin-orbit-driven ferromagnetic resonance. Nat. Nanotech. 6, 413–417 (2011).

    Article  ADS  Google Scholar 

  29. Arials, R. & Mills, D. L. Extrinsic contributions to the ferromagnetic resonance response of ultrathin film. Phys., Rev. B 60, 7395–7409 (1999).

    Article  ADS  Google Scholar 

  30. McMichael, R. D. et al. Localized ferromagnetic resonance in inhomogeneous thin films. Phys. Rev. Lett. 90, 227601 (2003).

    Article  ADS  Google Scholar 

  31. Zakeri, Kh. et al. Spin dynamics in ferromagnets: Gilbert damping and two-magnon scattering. Phys., Rev. B 76, 104416 (2007).

    Article  ADS  Google Scholar 

  32. Mizukami, S. et al. The study on ferromagnetic resonance linewidth for NM/80NiFe/NM (NM=Cu, Ta, Pd and Pt) films. Jpn. J. Appl. Phys. 40, 580–585 (2001).

    Article  ADS  Google Scholar 

  33. Skrotskii, G. V. & Kurbatov, L. V. Theory of the anisotropy of the width of ferromagnetic resonance absorption line. Sov. Phys. JETP 35, 148–151 (1959).

    Google Scholar 

  34. Suhl, H. Ferromagnetic resonance in Nickel ferrite between one and two kilomegacycles. Phys. Rev. 97, 555–557 (1955).

    Article  ADS  Google Scholar 

  35. Tserkovnyak, Y. et al. Spin pumping and magnetization dynamics in metallic multilayers. Phys. Rev. B 66, 224403 (2002).

    Article  ADS  Google Scholar 

  36. Pai, C. F. et al. Dependence of efficiency of spin Hall torque on the transparency of Pt/ferromagnetic layer interfaces. Phys. Rev. B 92, 064426 (2015).

    Article  ADS  Google Scholar 

  37. Wastlbauer, G. & Bland, J. A. C. Structural and magnetic properties of ultrathin epitaxial Fe films on GaAs (001) and related semiconductor substrates. Adv. Phys. 54, 137–219 (2005).

    Article  ADS  Google Scholar 

  38. Gordon, R. A. & Crozier, E. D. In-plane structure anisotropy of ultra-thin Fe films on GaAs (001)- 4×6: X-ray absorption fine structure spectroscopy measurements. Phys. Rev. B 74, 165405 (2006).

    Article  ADS  Google Scholar 

  39. Moser, J. et al. Tunneling anisotropic magnetoresistance and spin-orbit coupling in Fe/GaAs/Au tunnel junctions. Phys. Rev. Lett. 99, 056601 (2007).

    Article  ADS  Google Scholar 

  40. Ebert, H. et al. Calculating condensed matter properties using the KKR-Green’s function method—recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Gmitra and J. Fabian for fruitful discussions. L. Chen is grateful for support from the Alexander von Humboldt Foundation. This work is support by the German Science Foundation (DFG) via SFB 689 and SFB 1277.

Author information

Authors and Affiliations

Authors

Contributions

L.C., C.H.B. and D.W. planned the study. L.C. fabricated the devices, and collected and analysed the data. M.A.W.S. carried out the full-film FMR measurements and L.C. analysed the data. H.S.K. performed the magnetization measurements. M.K., D.S. and D.B. grew the samples. S.W., S.M. and H.E. carried out the first-principle calculations. L.C. wrote the manuscript with input from S.W., S.M., H.E., C.H.B. and D.W. All authors discussed the results.

Corresponding author

Correspondence to C. H. Back.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–21, Supplementary References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Mankovsky, S., Wimmer, S. et al. Emergence of anisotropic Gilbert damping in ultrathin Fe layers on GaAs(001). Nature Phys 14, 490–494 (2018). https://doi.org/10.1038/s41567-018-0053-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0053-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing