Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The homeoprotein DLX3 and tumor suppressor p53 co-regulate cell cycle progression and squamous tumor growth

Abstract

Epidermal homeostasis depends on the coordinated control of keratinocyte cell cycle. Differentiation and the alteration of this balance can result in neoplastic development. Here we report on a novel DLX3-dependent network that constrains epidermal hyperplasia and squamous tumorigenesis. By integrating genetic and transcriptomic approaches, we demonstrate that DLX3 operates through a p53-regulated network. DLX3 and p53 physically interact on the p21 promoter to enhance p21 expression. Elevating DLX3 in keratinocytes produces a G1-S blockade associated with p53 signature transcriptional profiles. In contrast, DLX3 loss promotes a mitogenic phenotype associated with constitutive activation of ERK. DLX3 expression is lost in human skin cancers and is extinguished during progression of experimentally induced mouse squamous cell carcinoma (SCC). Reinstatement of DLX3 function is sufficient to attenuate the migration of SCC cells, leading to decreased wound closure. Our data establish the DLX3–p53 interplay as a major regulatory axis in epidermal differentiation and suggest that DLX3 is a modulator of skin carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Karia PS, Han J, Schmults CD . Cutaneous squamous cell carcinoma: estimated incidence of disease, nodal metastasis, and deaths from disease in the United States, 2012. J Am Acad Dermatol 2013; 68: 957–966.

    Article  PubMed  Google Scholar 

  2. Ratushny V, Gober MD, Hick R, Ridky TW, Seykora JT . From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest 2012; 122: 464–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP et al. A landscape of driver mutations in melanoma. Cell 2012; 150: 251–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Levine AJ, Hu W, Feng Z . The P53 pathway: what questions remain to be explored? Cell Death Differ 2006; 13: 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  5. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M . TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 2007; 26: 2157–2165.

    Article  CAS  PubMed  Google Scholar 

  6. Radoja N, Gazel A, Banno T, Yano S, Blumenberg M . Transcriptional profiling of epidermal differentiation. Physiol Genomics 2006; 27: 65–78.

    Article  CAS  PubMed  Google Scholar 

  7. Missero C, Di Cunto F, Kiyokawa H, Koff A, Dotto GP . The absence of p21Cip1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression. Genes Dev 1996; 10: 3065–3075.

    Article  CAS  PubMed  Google Scholar 

  8. Taylor WR, Stark GR . Regulation of the G2/M transition by p53. Oncogene 2001; 20: 1803–1815.

    Article  CAS  PubMed  Google Scholar 

  9. Botchkarev VA, Flores ER . p53/p63/p73 in the epidermis in health and disease. Cold Spring Harb Perspect Med 2014; 4: 1–12.

    Article  Google Scholar 

  10. Morasso MI, Radoja N . Dlx genes, p63, and ectodermal dysplasias. Birth Defects Res C Embryo Today 2005; 75: 163–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Su X, Chakravarti D, Flores ER . p63 steps into the limelight: crucial roles in the suppression of tumorigenesis and metastasis. Nat Rev Cancer 2013; 13: 136–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crum CP, McKeon FD . p63 in epithelial survival, germ cell surveillance, and neoplasia. Annu Rev Pathol 2010; 5: 349–371.

    Article  CAS  PubMed  Google Scholar 

  13. King KE, Ha L, Camilli T, Weinberg WC . Delineating molecular mechanisms of squamous tissue homeostasis and neoplasia: focus on p63. J Skin Cancer 2013; 2013: 632028.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dotto JE, Glusac EJ . p63 is a useful marker for cutaneous spindle cell squamous cell carcinoma. J Cutan Pathol 2006; 33: 413–417.

    Article  PubMed  Google Scholar 

  15. Romano RA, Smalley K, Magraw C, Serna VA, Kurita T, Raghavan S et al. DeltaNp63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development 2012; 139: 772–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Su X, Paris M, Gi YJ, Tsai KY, Cho MS, Lin YL et al. TAp63 prevents premature aging by promoting adult stem cell maintenance. Cell Stem Cell 2009; 5: 64–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Su X, Chakravarti D, Cho MS, Liu L, Gi YJ, Lin YL et al. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 2010; 467: 986–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duverger O, Morasso MI . Role of homeobox genes in the patterning, specification, and differentiation of ectodermal appendages in mammals. J Cell Physiol 2008; 216: 337–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abate-Shen C . Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer 2002; 2: 777–785.

    Article  CAS  PubMed  Google Scholar 

  20. Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 2007; 128: 309–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morasso MI, Markova NG, Sargent TD . Regulation of epidermal differentiation by a Distal-less homeodomain gene. J Cell Biol 1996; 135: 1879–1887.

    Article  CAS  PubMed  Google Scholar 

  22. Park GT, Morasso MI . Regulation of the Dlx3 homeobox gene upon differentiation of mouse keratinocytes. J Biol Chem 1999; 274: 26599–26608.

    Article  CAS  PubMed  Google Scholar 

  23. Hwang J, Kita R, Kwon HS, Choi EH, Lee SH, Udey MC et al. Epidermal ablation of Dlx3 is linked to IL-17-associated skin inflammation. Proc Natl Acad Sci USA 2011; 108: 11566–11571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Priolo M, Lagana C . Ectodermal dysplasias: a new clinical-genetic classification. J Med Genet 2001; 38: 579–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Di Costanzo A, Festa L, Duverger O, Vivo M, Guerrini L, La Mantia G et al. Homeodomain protein Dlx3 induces phosphorylation-dependent p63 degradation. Cell Cycle 2009; 8: 1185–1195.

    Article  CAS  PubMed  Google Scholar 

  26. Radoja N, Guerrini L, Lo Iacono N, Merlo GR, Costanzo A, Weinberg WC et al. Homeobox gene Dlx3 is regulated by p63 during ectoderm development: relevance in the pathogenesis of ectodermal dysplasias. Development 2007; 134: 13–18.

    Article  CAS  PubMed  Google Scholar 

  27. Vanbokhoven H, Melino G, Candi E, Declercq W . p63, a story of mice and men. J Invest Dermatol 2011; 131: 1196–1207.

    Article  CAS  PubMed  Google Scholar 

  28. Masse I, Barbollat-Boutrand L, Molina M, Berthier-Vergnes O, Joly-Tonetti N, Martin MT et al. Functional interplay between p63 and p53 controls RUNX1 function in the transition from proliferation to differentiation in human keratinocytes. Cell Death Dis 2012; 3: e318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sherr CJ, Roberts JM . CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  30. Topley GI, Okuyama R, Gonzales JG, Conti C, Dotto GP . p21(WAF1/Cip1) functions as a suppressor of malignant skin tumor formation and a determinant of keratinocyte stem-cell potential. Proc Natl Acad Sci USA 1999; 96: 9089–9094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Candi E, Agostini M, Melino G, Bernassola F . How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat 2014; 35: 702–714.

    Article  CAS  PubMed  Google Scholar 

  32. Gandarillas A . The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint. Cell Cycle 2012; 11: 4507–4516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Candi E, Rufini A, Terrinoni A, Giamboi-Miraglia A, Lena AM, Mantovani R et al. DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci USA 2007; 104: 11999–12004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo X, Keyes WM, Papazoglu C, Zuber J, Li W, Lowe SW et al. TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat Cell Biol 2009; 11: 1451–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koster MI, Roop DR . p63 and epithelial appendage development. Differentiation 2004; 72: 364–370.

    Article  CAS  PubMed  Google Scholar 

  36. Koh LF, Ng BK, Bertrand J, Thierry F . Transcriptional control of late differentiation in human keratinocytes by TAp63 and Notch. Exp Dermatol 2015; 24: 754–760.

    Article  CAS  PubMed  Google Scholar 

  37. Schavolt KL, Pietenpol JA . p53 and Delta Np63 alpha differentially bind and regulate target genes involved in cell cycle arrest, DNA repair and apoptosis. Oncogene 2007; 26: 6125–6132.

    Article  CAS  PubMed  Google Scholar 

  38. Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 2006; 124: 207–219.

    Article  CAS  PubMed  Google Scholar 

  39. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998; 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  40. Saramaki A, Banwell CM, Campbell MJ, Carlberg C . Regulation of the human p21(waf1/cip1) gene promoter via multiple binding sites for p53 and the vitamin D3 receptor. Nucleic Acids Res 2006; 34: 543–554.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Darwiche N, Ryscavage A, Perez-Lorenzo R, Wright L, Bae DS, Hennings H et al. Expression profile of skin papillomas with high cancer risk displays a unique genetic signature that clusters with squamous cell carcinomas and predicts risk for malignant conversion. Oncogene 2007; 26: 6885–6895.

    Article  CAS  PubMed  Google Scholar 

  42. Roop DR, Lowy DR, Tambourin PE, Strickland J, Harper JR, Balaschak M et al. An activated Harvey ras oncogene produces benign tumours on mouse epidermal tissue. Nature 1986; 323: 822–824.

    Article  CAS  PubMed  Google Scholar 

  43. Ha L, Ponnamperuma RM, Jay S, Ricci MS, Weinberg WC . Dysregulated DeltaNp63alpha inhibits expression of Ink4a/arf, blocks senescence, and promotes malignant conversion of keratinocytes. PloS One 2011; 6: e21877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tu Z, Aird KM, Zhang R . RAS, cellular senescence and transformation: the BRCA1 DNA repair pathway at the crossroads. Small GTPases 2012; 3: 163–167.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cataisson C, Ohman R, Patel G, Pearson A, Tsien M, Jay S et al. Inducible cutaneous inflammation reveals a protumorigenic role for keratinocyte CXCR2 in skin carcinogenesis. Cancer Res 2009; 69: 319–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Burns JE, Baird MC, Clark LJ, Burns PA, Edington K, Chapman C et al. Gene mutations and increased levels of p53 protein in human squamous cell carcinomas and their cell lines. Br J Cancer 1993; 67: 1274–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cai BH, Chao CF, Lu MH, Lin HC, Chen JY . A half-site of the p53-binding site on the keratin 14 promoter is specifically activated by p63. J Biochem 2012; 152: 99–110.

    Article  CAS  PubMed  Google Scholar 

  48. Flores ER . The roles of p63 in cancer. Cell Cycle 2007; 6: 300–304.

    Article  CAS  PubMed  Google Scholar 

  49. King KE, Weinberg WC . p63: defining roles in morphogenesis, homeostasis, and neoplasia of the epidermis. Mol Carcinog 2007; 46: 716–724.

    Article  CAS  PubMed  Google Scholar 

  50. Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW . p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 2006; 9: 45–56.

    Article  CAS  PubMed  Google Scholar 

  51. Senoo M, Pinto F, Crum CP, McKeon F . p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell 2007; 129: 523–536.

    Article  CAS  PubMed  Google Scholar 

  52. Chakravarti D, Su X, Cho MS, Bui NH, Coarfa C, Venkatanarayan A et al. Induced multipotency in adult keratinocytes through down-regulation of DeltaNp63 or DGCR8. Proc Natl Acad Sci USA 2014; 111: E572–E581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hwang J, Mehrani T, Millar SE, Morasso MI . Dlx3 is a crucial regulator of hair follicle differentiation and cycling. Development 2008; 135: 3149–3159.

    Article  CAS  PubMed  Google Scholar 

  54. Aasen T, Izpisua Belmonte JC . Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 2010; 5: 371–382.

    Article  CAS  PubMed  Google Scholar 

  55. Lichti U, Anders J, Yuspa SH . Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat Protoc 2008; 3: 799–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cataisson C, Salcedo R, Hakim S, Moffitt BA, Wright L, Yi M et al. IL-1R-MyD88 signaling in keratinocyte transformation and carcinogenesis. J Exp Med 2012; 209: 1689–1702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Duverger O, Lee D, Hassan MQ, Chen SX, Jaisser F, Lian JB et al. Molecular consequences of a frameshifted DLX3 mutant leading to Tricho-Dento-Osseous syndrome. J Biol Chem 2008; 283: 20198–20208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  59. Lessard JC, Kalinin A, Bible PW, Morasso MI . Calmodulin 4 is dispensable for epidermal barrier formation and wound healing in mice. Exp Dermatol 2015; 24: 55–57.

    Article  CAS  PubMed  Google Scholar 

  60. Kelder T, van Iersel MP, Hanspers K, Kutmon M, Conklin BR, Evelo CT et al. WikiPathways: building research communities on biological pathways. Nucleic Acids Res 2012; 40: D1301–D1307.

    Article  CAS  PubMed  Google Scholar 

  61. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T . Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011; 27: 431–432.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank current and past members of the Laboratory of Skin Biology and members of the Laboratory of Cancer Biology and Genetics, and Dr Mark Udey for helpful discussions. We also thank Andrew Ryscavage (LCBG), Gustavo Gutierrez-Cruz (NIAMS Genome Analysis Core Facility), Dr Hong-Wei Sun (Biodata Mining and Discovery Section, NIAMS) and Kristina Zaal of the NIAMS Light Imaging Core Facility. This work was supported by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (M.I.M. ZIA AR041124-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M I Morasso.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palazzo, E., Kellett, M., Cataisson, C. et al. The homeoprotein DLX3 and tumor suppressor p53 co-regulate cell cycle progression and squamous tumor growth. Oncogene 35, 3114–3124 (2016). https://doi.org/10.1038/onc.2015.380

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.380

This article is cited by

Search

Quick links