Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Slug is temporally regulated by cyclin E in cell cycle and controls genome stability

Abstract

The transcriptional repressor Slug is best known to control epithelial–mesenchymal transition (EMT) and promote cancer invasion/metastasis. In this study, we demonstrate that Slug is temporally regulated during cell cycle progression. At G1/S transition, cyclin E–cyclin-dependent kinase 2 mediates the phosphorylation of Slug at Ser-54 and Ser-104, resulting in its ubiquitylation and degradation. Non-phosphorylatable Slug is markedly stabilized at G1/S transition compared with wild-type Slug and greatly leads to downregulation of DNA synthesis and checkpoint-related proteins, including TOP1, DNA Ligase IV and Rad17, reduces cell proliferation, delays S-phase progression and contributes to genome instability. Our results indicate that Slug has multifaceted roles in cancer progression by controlling both EMT and genome stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Malumbres M, Barbacid M . Mammalian cyclin-dependent kinases. Trends Biochem Sci 2005; 30: 630–641.

    Article  CAS  PubMed  Google Scholar 

  2. Hwang HC, Clurman BE . Cyclin E in normal and neoplastic cell cycles. Oncogene 2005; 24: 2776–2786.

    Article  CAS  PubMed  Google Scholar 

  3. Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE . Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev 1997; 11: 1464–1478.

    Article  CAS  PubMed  Google Scholar 

  4. Liu E, Li X, Yan F, Zhao Q, Wu X . Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem 2004; 279: 17283–17288.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao J, Dynlacht B, Imai T, Hori T, Harlow E . Expression of NPAT, a novel substrate of cyclin E-CDK2, promotes S-phase entry. Genes Dev 1998; 12: 456–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dyson N . The regulation of E2F by pRB-family proteins. Genes Dev 1998; 12: 2245–2262.

    Article  CAS  PubMed  Google Scholar 

  7. Nieto MA, Sargent MG, Wilkinson DG, Cooke J . Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 1994; 264: 835–839.

    Article  CAS  PubMed  Google Scholar 

  8. Mayor R, Morgan R, Sargent MG . Induction of the prospective neural crest of Xenopus. Development 1995; 121: 767–777.

    CAS  PubMed  Google Scholar 

  9. Hajra KM, Chen DY, Fearon ER . The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 2002; 62: 1613–1618.

    CAS  PubMed  Google Scholar 

  10. Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A . The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 2003; 116: 499–511.

    Article  CAS  PubMed  Google Scholar 

  11. Shih JY, Yang PC . The EMT regulator slug and lung carcinogenesis. Carcinogenesis 2011; 32: 1299–1304.

    Article  CAS  PubMed  Google Scholar 

  12. Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 2009; 11: 694–704.

    Article  CAS  PubMed  Google Scholar 

  13. Emadi Baygi M, Soheili ZS, Essmann F, Deezagi A, Engers R, Goering W et al. Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines. Tumour Biol 2010; 31: 297–307.

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Uygur B, Zhang Z, Shao L, Romero D, Vary C et al. Slug inhibits proliferation of human prostate cancer cells via downregulation of cyclin D1 expression. Prostate 2010; 70: 1768–1777.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Turner FE, Broad S, Khanim FL, Jeanes A, Talma S, Hughes S et al. Slug regulates integrin expression and cell proliferation in human epidermal keratinocytes. J Biol Chem 2006; 281: 21321–21331.

    Article  CAS  PubMed  Google Scholar 

  16. Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA . Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 2004; 18: 1131–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morgan DO . Principles of CDK regulation. Nature 1995; 374: 131–134.

    Article  CAS  PubMed  Google Scholar 

  18. Hengst L, Reed SI . Translational control of p27Kip1 accumulation during the cell cycle. Science 1996; 271: 1861–1864.

    Article  CAS  PubMed  Google Scholar 

  19. Siu KT, Rosner MR, Minella AC . An integrated view of cyclin E function and regulation. Cell Cycle 2012; 11: 57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 2008; 132: 487–498.

    Article  CAS  PubMed  Google Scholar 

  21. Sakaue-Sawano A, Kobayashi T, Ohtawa K, Miyawaki A . Drug-induced cell cycle modulation leading to cell-cycle arrest, nuclear mis-segregation, or endoreplication. BMC Cell Biol 2011; 12: 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aguilera A, Gomez-Gonzalez B . Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 2008; 9: 204–217.

    Article  CAS  PubMed  Google Scholar 

  23. Tuduri S, Crabbe L, Conti C, Tourriere H, Holtgreve-Grez H, Jauch A et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol 2009; 11: 1315–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mills KD, Ferguson DO, Essers J, Eckersdorff M, Kanaar R, Alt FW . Rad54 and DNA Ligase IV cooperate to maintain mammalian chromatid stability. Genes Dev 2004; 18: 1283–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karanjawala ZE, Grawunder U, Hsieh CL, Lieber MR . The nonhomologous DNA end joining pathway is important for chromosome stability in primary fibroblasts. Curr Biol 1999; 9: 1501–1504.

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Zou L, Zheng H, Wei Q, Elledge SJ, Li L . Genomic instability and endoreduplication triggered by RAD17 deletion. Genes Dev 2003; 17: 965–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dhar SK, Delmolino L, Dutta A . Architecture of the human origin recognition complex. J Biol Chem 2001; 276: 29067–29071.

    Article  CAS  PubMed  Google Scholar 

  28. Carrano AC, Eytan E, Hershko A, Pagano M . SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999; 1: 193–199.

    Article  CAS  PubMed  Google Scholar 

  29. Vernon AE, LaBonne C . Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa. Development 2006; 133: 3359–3370.

    Article  CAS  PubMed  Google Scholar 

  30. Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA . Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 1992; 70: 993–1006.

    Article  CAS  PubMed  Google Scholar 

  31. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 1997; 17: 353–360.

    Article  CAS  PubMed  Google Scholar 

  32. Yuan A, Yu CJ, Luh KT, Kuo SH, Lee YC, Yang PC . Aberrant p53 expression correlates with expression of vascular endothelial growth factor mRNA and interleukin-8 mRNA and neoangiogenesis in non-small-cell lung cancer. J Clin Oncol 2002; 20: 900–910.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The proteomics data analysis by LTQ-Orbitrap XL hybrid mass spectrometer was performed by the Academia Sinica Common Mass Spectrometry Facilities located at the Institute of Biological Chemistry, Taipei, Taiwan. shRNA constructs were obtained from the National RNAi Core Facility at the Institute of Molecular Biology/Genomic Research Center, Academia Sinica, Taipei, Taiwan. We thank Szu-Hua Pan, Pei-Fang Hung and Shu-Wei Lin for technical assistance. S-PW is supported by a Human Frontier Science Program long-term fellowship. This work was supported by grants from the National Science Council (NSC99-2628-B-006-031-MY3, NSC101-2325-B-006-018, NSC100-2321-B-002-071, NSC101-2321-B-002-068 and NSC102-2811-B-002-069) and National Taiwan University (101R7601–2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T-M Hong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, WL., Huang, HC., Kao, SH. et al. Slug is temporally regulated by cyclin E in cell cycle and controls genome stability. Oncogene 34, 1116–1125 (2015). https://doi.org/10.1038/onc.2014.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.58

This article is cited by

Search

Quick links