Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

miR-339-5p regulates the p53 tumor-suppressor pathway by targeting MDM2

Abstract

MicroRNAs (miRNAs) regulate many key cancer-relevant pathways and may themselves possess oncogenic or tumor-suppressor functions. Consequently, miRNA dysregulation has been shown to be a prominent feature in many human cancers. The p53 tumor suppressor acts as a negative regulator of cell proliferation in response to stress and represents the most commonly lost and mutated gene in human cancers. The function of p53 is inhibited by the MDM2 oncoprotein. Using a high-throughput screening approach, we identified miR-339-5p as a regulator of the p53 pathway. We demonstrate that this regulation occurs via the ability of miR-339-5p to target directly the 3′-untranslated region of MDM2 mRNA, reducing MDM2 expression and thus promoting p53 function. Consequently, overexpression of miR-339-5p positively impacts on p53-governed cellular responses such as proliferation arrest and senescence, whereas inhibition of miR-339-5p function perturbs the p53 response in cancer cells, allowing an increased proliferation rate. In addition, miR-339-5p expression is downregulated in tumors harboring wild-type TP53, suggesting that reduction of miR-339-5p level helps to suppress the p53 response in p53-competent tumor cells. Furthermore, we show that a negative correlation between miR-339-5p and MDM2 expression exists in human cancer, implying that the interaction is important for cancer development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Vousden KH, Lane DP . P53 in health and disease. Nat Rev 2007; 8: 275–83.

    Article  CAS  Google Scholar 

  3. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–97.

    Article  CAS  PubMed  Google Scholar 

  4. Leung AKL, Sharp PA . MicroRNA functions in stress responses. Mol Cell 2010; 40: 205–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jansson MD, Lund AH . MicroRNA and cancer. Mol Oncol 2012; 6: 590–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hermeking H . MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev 2012;12: 613–26.

    Article  CAS  Google Scholar 

  7. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. P53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007; 17: 1298–307.

    Article  CAS  PubMed  Google Scholar 

  8. Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M et al. P53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 2009;17: 236–45.

    Article  PubMed  Google Scholar 

  9. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY . MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 2007; 67: 8433–8.

    Article  CAS  PubMed  Google Scholar 

  10. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H . Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 2007; 104: 15472–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamakuchi M, Ferlito M, Lowenstein CJ . miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 2008;105: 13421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bou Kheir T, Futoma-Kazmierczak E, Jacobsen A, Krogh A, Bardram L, Hother C et al. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol Cancer 2011; 10: 29.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lize M, Pilarski S, Dobbelstein M . E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell Death Differ 2009; 17: 452–8.

    Article  PubMed  Google Scholar 

  14. Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 2009; 28: 1714–24.

    Article  CAS  PubMed  Google Scholar 

  15. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW et al. P53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 2011;13: 317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci USA 2010;107: 6334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marine JC, Lozano G . Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ 2009; 17: 93–102.

    Article  Google Scholar 

  18. Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev 2009; 23: 862–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu W, Chan CS, Wu R, Zhang C, Sun Y, Song JS et al. Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell 2010; 38: 689–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar M, Lu Z, Takwi AA, Chen W, Callander NS, Ramos KS et al. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene 2010; 30: 843–53.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li J, Donath S, Li Y, Qin D, Prabhakar BS, Li P . miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 2010; 6: e1000795.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, Santhanam R et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 2010; 18: 367–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiao J, Lin H, Luo X, Wang Z . miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J 2011; 30: 524–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang J, Sun Q, Zhang Z, Ge S, Han ZG, Chen WT . Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop. Oncogene 2012; 32: 61–9.

    Article  CAS  PubMed  Google Scholar 

  25. Park SY, Lee JH, Ha M, Nam JW, Kim VN . miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 2008;16: 23–9.

    Article  PubMed  Google Scholar 

  26. Burns DM, D'Ambrogio A, Nottrott S, Richter JD . CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature 2011; 473: 105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 2009; 69: 5761–7.

    Article  CAS  PubMed  Google Scholar 

  28. Moll UM, Wolff S, Speidel D, Deppert W . Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 2005; 17: 631–6.

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K . Modulation of microRNA processing by p53. Nature 2009; 460: 529–33.

    Article  CAS  PubMed  Google Scholar 

  30. Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 1999; 104: 263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Z, Wang H, Li M, Agrawal S, Chen X, Zhang R . MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53. J Biol Chem 2004; 279: 16000–6.

    Article  CAS  PubMed  Google Scholar 

  32. Jin Y, Lee H, Zeng SX, Dai MS, Lu H . MDM2 promotes p21waf1/cip1 proteasomal turnover independently of ubiquitylation. EMBO J 2003; 22: 6365–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vispé S, DeVries L, Créancier L, Besse J, Bréand S, Hobson DJ et al. Triptolide is an inhibitor of RNA polymerase I and II-dependent transcription leading predominantly to down-regulation of short-lived mRNA. Mol Cancer Ther 2009; 8: 2780–90.

    Article  PubMed  Google Scholar 

  34. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  35. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E . The role of site accessibility in microRNA target recognition. Nat Genet 2007; 39: 1278–84.

    Article  CAS  PubMed  Google Scholar 

  36. Lowe SW, Cepero E, Evan G . Intrinsic tumour suppression. Nature 2004; 432: 307–15.

    Article  CAS  PubMed  Google Scholar 

  37. Manfredi JJ . The Mdm2–p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 2010; 24: 1580–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Iorio MV, Croce CM . MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012; 4: 143–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wade M, Wang YV, Wahl GM . The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 2010; 20: 299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bouska A, Lushnikova T, Plaza S, Eischen CM . Mdm2 promotes genetic instability and transformation independent of p53. Mol Cell Biol 2008; 28: 4862–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ries S, Biederer C, Woods D, Shifman O, Shirasawa S, Sasazuki T et al. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 2000; 103: 321–30.

    Article  CAS  PubMed  Google Scholar 

  42. Wade M, Li Y-C, Wahl GM . MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev 2013; 13: 83–96.

    Article  CAS  Google Scholar 

  43. Wu ZS, Wu Q, Wang CQ, Wang XN, Wang Y, Zhao JJ et al. MiR-339-5p inhibits breast cancer cell migration and invasion in vitro and may be a potential biomarker for breast cancer prognosis. BMC Cancer 2010; 10: 542.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhou C, Liu G, Wang L, Lu Y, Yuan L, Zheng L et al. MiR-339-5p regulates the growth, colony formation and metastasis of colorectal cancer cells by targeting PRL-1. PLoS ONE 2013; 8: e63142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R . Fast and effective prediction of microRNA/target duplexes. RNA 2004; 10: 1507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH . Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 2008; 283: 1026–33.

    Article  CAS  PubMed  Google Scholar 

  47. Fox MH . A model for the computer analysis of synchronous DNA distributions obtained by flow cytometry. Cytometry 1980; 1: 71–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratory was supported by the Danish National Advanced Technology Foundation, the Danish National Research Foundation, the Novo Nordisk Foundation, the Lundbeck Foundation and the Danish Cancer Society. Dr Jansson was supported by a grant from the Danish Medical Research Council. We acknowledge the The Cancer Genome Atlas Research Network for our use of their publically available tumor data sets. We thank Bert Vogelstein and Kristian Helin for cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A H Lund.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansson, M., Damas, N., Lees, M. et al. miR-339-5p regulates the p53 tumor-suppressor pathway by targeting MDM2. Oncogene 34, 1908–1918 (2015). https://doi.org/10.1038/onc.2014.130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.130

This article is cited by

Search

Quick links