Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A role for Mediator complex subunit MED13L in Rb/E2F-induced growth arrest

Abstract

The Rb/E2F pathway is deregulated in virtually all human tumors. It is clear that, in addition to Rb itself, essential cofactors required for transcriptional repression and silencing of E2F target genes are mutated or lost in cancer. To identify novel cofactors required for Rb/E2F-mediated inhibition of cell proliferation, we performed a genome-wide short hairpin RNA screen. In addition to several known Rb cofactors, the screen identified components of the Mediator complex, a large multiprotein coactivator required for RNA polymerase II transcription. We show that the Mediator complex subunit MED13L is required for Rb/E2F control of cell growth, the complete repression of cell cycle target genes, and cell cycle inhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Weinberg RA . The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–330.

    Article  CAS  PubMed  Google Scholar 

  2. Sherr CJ . Cancer cell cycles. Science 1996; 274: 1672–1677.

    Article  CAS  PubMed  Google Scholar 

  3. Burkhart DL, Sage J . Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 2008; 8: 671–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Attwooll C, Denchi EL, Helin K . The E2F family: specific functions and overlapping interests. The EMBO J 2004; 23: 4709–4716.

    Article  CAS  PubMed  Google Scholar 

  5. Dyson N . The regulation of E2F by pRB-family proteins. Genes Dev 1998; 12: 2245–2262.

    Article  CAS  PubMed  Google Scholar 

  6. Nevins JR . The Rb/E2F pathway and cancer. Hum Mol Genet 2001; 10: 699–703.

    Article  CAS  PubMed  Google Scholar 

  7. Cobrinik D . Pocket proteins and cell cycle control. Oncogene 2005; 24: 2796–2809.

    Article  CAS  PubMed  Google Scholar 

  8. Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O’Carroll D et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 2001; 412: 561–565.

    Article  CAS  PubMed  Google Scholar 

  9. Rayman JB, Takahashi Y, Indjeian VB, Dannenberg J-H, Catchpole S, Watson RJ et al. E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev 2002; 16: 933–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP . DNMT1 forms a c omplex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 2000; 25: 338–342.

    Article  CAS  PubMed  Google Scholar 

  11. Strobeck MW, Knudsen KE, Fribourg AF, DeCristofaro MF, Weissman BE, Imbalzano AN et al. BRG-1 is required for RB-mediated cell cycle arrest. Proc Natl Acad Sci USA 2000; 97: 7748–7753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang HS, Gavin M, Dahiya A, Postigo AA, Ma D, Luo RX et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 2000; 101: 79–89.

    Article  CAS  PubMed  Google Scholar 

  13. Medina PP, Sanchez-Cespedes M . Involvement of the chromatin-remodeling factor BRG1/SMARCA4 in human cancer. Epigenetics 2008; 3: 64–68.

    Article  PubMed  Google Scholar 

  14. Weissman B, Knudsen KE . Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer. Cancer Res 2009; 69: 8223–8230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Campisi J, d’Adda di Fagagna F . Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8: 729–740.

    Article  CAS  PubMed  Google Scholar 

  16. Hayflick L, Moorhead PS . The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25: 585–621.

    Article  CAS  PubMed  Google Scholar 

  17. Greider CW, Blackburn EH . Tracking telomerase. Cell 2004; 116: S83–S86, 1 p following S6.

    Article  CAS  PubMed  Google Scholar 

  18. Serrano M, Blasco MA . Putting the stress on senescence. Curr Opin Cell Biol 2001; 13: 748–753.

    Article  CAS  PubMed  Google Scholar 

  19. Serrano M, lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  20. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995; 92: 9363–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003; 113: 703–716.

    Article  CAS  PubMed  Google Scholar 

  22. Prieur A, Peeper DS . Cellular senescence in vivo: a barrier to tumorigenesis. Curr Opin Cell Biol 2008; 20: 150–155.

    Article  CAS  PubMed  Google Scholar 

  23. Shay JW, Roninson IB . Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 2004; 23: 2919–2933.

    Article  CAS  PubMed  Google Scholar 

  24. Collado M, Serrano M . Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 2010; 10: 51–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 2005; 436: 660–665.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436: 725–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. Tumour biology: senescence in premalignant tumours. Nature 2005; 436: 642.

    Article  CAS  PubMed  Google Scholar 

  28. Ha L, Ichikawa T, Anver M, Dickins R, Lowe S, Sharpless NE et al. ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence. Proc Natl Acad Sci USA 2007; 104: 10968–10973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005; 436: 720–724.

    Article  CAS  PubMed  Google Scholar 

  30. Qin X-Q, Chittenden T, Livingston DM, Kaelin Jr WG . Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev 1992; 6: 953–964.

    Article  CAS  PubMed  Google Scholar 

  31. Yang H, Williams BO, Hinds PW, Shih TS, Jacks T, Bronson RT et al. Tumor suppression by a severely truncated species of retinoblastoma protein. Mol Cell Biol 2002; 22: 3103–3110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Knudsen ES, Buckmaster C, Chen T-T, Feramisco JR, Wang JYJ . Inhibition of DNA synthesis by RB; effects on G1/S transition and S-phase progression, 1998; 12: 2278–2292.

  33. Angus SP, Mayhew CN, Solomon DA, Braden WA, Markey MP, Okuno Y et al. RB reversibly inhibits DNA replication via two temporally distinct mechanisms. Mol Cell Biol 2004; 24: 5404–5420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cowger JJ, Zhao Q, Isovic M, Torchia J . Biochemical characterization of the zinc-finger protein 217 transcriptional repressor complex: identification of a ZNF217 consensus recognition sequence. Oncogene 2007; 26: 3378–3386.

    Article  CAS  PubMed  Google Scholar 

  35. Quinlan KG, Nardini M, Verger A, Francescato P, Yaswen P, Corda D et al. Specific recognition of ZNF217 and other zinc finger proteins at a surface groove of C-terminal binding proteins. Mol Cell Biol 2006; 26: 8159–8172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meloni AR, Lai CH, Yao TP, Nevins JR . A mechanism of COOH-terminal binding protein-mediated repression. Mol Cancer Res 2005; 3: 575–583.

    Article  CAS  PubMed  Google Scholar 

  37. Meloni AR, Smith EJ, Nevins JR . A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor. Proc Natl Acad Sci USA 1999; 96: 9574–9579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quinlan KG, Verger A, Yaswen P, Crossley M . Amplification of zinc finger gene 217 (ZNF217) and cancer: when good fingers go bad. Biochim Biophys Acta 2007; 1775: 333–340.

    CAS  PubMed  Google Scholar 

  39. Sato S, Tomomori-Sato C, Parmely TJ, Florens L, Zybailov B, Swanson SK et al. A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol Cell 2004; 14: 685–691.

    Article  CAS  PubMed  Google Scholar 

  40. Conaway RC, Sato S, Tomomori-Sato C, Yao T, Conaway JW . The mammalian mediator complex and its role in transcriptional regulation. Trends Biochem Sci 2005; 30: 250–255.

    Article  CAS  PubMed  Google Scholar 

  41. Kornberg RD . Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 2005; 30: 235–239.

    Article  CAS  PubMed  Google Scholar 

  42. Muncke N, Jung C, Rudiger H, Ulmer H, Roeth R, Hubert A et al. Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation 2003; 108: 2843–2850.

    Article  CAS  PubMed  Google Scholar 

  43. Sever-Chroneos Z, Angus SP, Fribourg AF, Wan H, Todorov I, Knudsen KE et al. Retinoblastoma tumor suppressor protein signals through inhibition of cyclin-dependent kinase 2 activity to disrupt PCNA function in S phase. Mol Cell Biol 2001; 21: 4032–4045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chicas A, Wang X, Zhang C, McCurrach M, Zhao Z, Mert O et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 2010; 17: 376–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008; 133: 1006–1018.

    Article  CAS  PubMed  Google Scholar 

  46. Alexander K, Hinds PW . Requirement for p27(KIP1) in retinoblastoma protein-mediated senescence. Mol Cell Biol 2001; 21: 3616–3631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008; 133: 1019–1031.

    Article  CAS  PubMed  Google Scholar 

  48. Sebastian T, Malik R, Thomas S, Sage J, Johnson PF . C/EBPbeta cooperates with RB:E2F to implement Ras(V12)-induced cellular senescence. Embo J 2005; 24: 3301–3312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wolyniec K, Wotton S, Kilbey A, Jenkins A, Terry A, Peters G et al. RUNX1 and its fusion oncoprotein derivative, RUNX1-ETO, induce senescence-like growth arrest independently of replicative stress. Oncogene 2009; 28: 2502–2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Banck MS, Li S, Nishio H, Wang C, Beutler AS, Walsh MJ . The ZNF217 oncogene is a candidate organizer of repressive histone modifiers. Epigenetics 2009; 4: 100–106.

    Article  CAS  PubMed  Google Scholar 

  51. Krig SR, Jin VX, Bieda MC, O’Geen H, Yaswen P, Green R et al. Identification of genes directly regulated by the oncogene ZNF217 using chromatin immunoprecipitation (ChIP)-chip assays. J Biol Chem 2007; 282: 9703–9712.

    Article  CAS  PubMed  Google Scholar 

  52. Huang G, Krig S, Kowbel D, Xu H, Hyun B, Volik S et al. ZNF217 suppresses cell death associated with chemotherapy and telomere dysfunction. Hum Mol Genet 2005; 14: 3219–3225.

    Article  CAS  PubMed  Google Scholar 

  53. Nonet GH, Stampfer MR, Chin K, Gray JW, Collins CC, Yaswen P . The ZNF217 gene amplified in breast cancers promotes immortalization of human mammary epithelial cells. Cancer Res 2001; 61: 1250–1254.

    CAS  PubMed  Google Scholar 

  54. Sun G, Zhou J, Yin A, Ding Y, Zhong M . Silencing of ZNF217 gene influences the biological behavior of a human ovarian cancer cell line. Int J Oncol 2008; 32: 1065–1071.

    CAS  PubMed  Google Scholar 

  55. Donner AJ, Szostek S, Hoover JM, Espinosa JM . CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol Cell 2007; 27: 121–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Knuesel MT, Meyer KD, Bernecky C, Taatjes DJ . The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev 2009; 23: 439–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mo X, Kowenz-Leutz E, Xu H, Leutz A . Ras induces mediator complex exchange on C/EBP beta. Mol Cell 2004; 13: 241–250.

    Article  CAS  PubMed  Google Scholar 

  58. Ding N, Zhou H, Esteve PO, Chin HG, Kim S, Xu X et al. Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation. Mol Cell 2008; 31: 347–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 2008; 455: 547–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morris EJ, Ji JY, Yang F, Di Stefano L, Herr A, Moon NS et al. E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 2008; 455: 552–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Malik S, Roeder RG . The metazoan mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 2010; 11: 761–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang L, Evans J, Andrews HK, Beckstead RB, Thummel CS, Bashirullah A . A genetic screen identifies new regulators of steroid-triggered programmed cell death in Drosophila. Genetics 2008; 180: 269–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Morita S, Kojima T, Kitamura T . Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 2000; 7: 1063–1066.

    Article  CAS  PubMed  Google Scholar 

  64. Knudsen KE, Fribourg AF, Strobeck MW, Blanchard JM, Knudsen ES . Cyclin A is a functional target of retinoblastoma tumor suppressor protein-mediated cell cycle arrest. J Biol Chem 1999; 274: 27632–27641.

    Article  CAS  PubMed  Google Scholar 

  65. He T-C, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Biochem Biophys Res Comm 1998; 95: 2509–2514.

    CAS  Google Scholar 

Download references

Acknowledgements

All aspects of the research were supported under the National Cancer Institute Integrative Cancer Biology Program via grant National Institutes of Health 5-U54-CA112952. SPA was supported by NIH F32CA113177. We thank Lazlo Jakoi for technical assistance and all the members of the Nevins lab for their critical feedback and suggestions. We are grateful to Bernard Mathey-Prevot and Jeffrey Chang for comments on the manuscript. We thank Kaye Culler for assistance in submitting the manuscript. We are grateful to T Kitamura for providing Plat-E and Plat-A retroviral packaging cells, J DeCaprio for providing the T98G-EcoR cells, and E Knudsen for providing the -608Cyclin A-Luc and PSM-Rb plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Nevins.

Ethics declarations

Competing interests

Dr Nevins' work has been funded by the NIH. He has received compensation as a member of the scientific advisory board of Qiagen SA Biosciences. In addition, he reports ownership interest in Expression Analysis, Inc. Dr Angus declares no potential conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angus, S., Nevins, J. A role for Mediator complex subunit MED13L in Rb/E2F-induced growth arrest. Oncogene 31, 4709–4717 (2012). https://doi.org/10.1038/onc.2011.622

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.622

Keywords

This article is cited by

Search

Quick links