Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Adenine nucleotide translocase family: four isoforms for apoptosis modulation in cancer

Abstract

Mitochondria have important functions in mammalian cells as the energy powerhouse and integrators of the mitochondrial pathway of apoptosis. The adenine nucleotide translocase (ANT) is a family of proteins involved in cell death pathways that perform distinctly opposite functions to regulate cell fate decisions. On the one hand, ANT catalyzes the adenosine triphosphate export from the mitochondrial matrix to the intermembrane space with the concomitant import of ADP from the intermembrane space to the matrix. On the other hand, during periods of stress, ANT could function as a lethal pore and trigger the process of mitochondrial membrane permeabilization, which leads irreversibly to cell death. In human, ANT is encoded by four homologous genes, whose expression is not only tissue specific, but also varies according to the pathophysiological state of the cell. Recent evidence revealed a differential role of the ANT isoforms in apoptosis and a deregulation of their expression in cancer. In this review, we introduce the current knowledge of ANT in apoptosis and cancer cells and propose a novel classification of ANT isoforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ANT:

adenine nucleotide translocase

BA:

bongkrekic acid

Ca2+:

calcium

CAT:

carboxyatractyloside

CsA:

cyclosporin A

CypD:

cyclophilin D

ΔΨm:

mitochondrial transmembrane potential

ER:

endoplasmic reticulum

MMP:

mitochondrial membrane permeabilization

IM:

inner membrane

OM:

outer membrane

PiC:

phosphate carrier

PTPC:

permeability transition pore complex

ROS:

reactive oxygen species

UCP1:

uncoupling protein 1

VDAC:

voltage-dependent anion channel

Vpr:

viral protein R

References

  • Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I et al. (1997). Inhibition of Bax channel-forming activity by Bcl-2. Science 277: 370–372.

    Article  CAS  PubMed  Google Scholar 

  • Atlante A, Amadoro G, Bobba A, de Bari L, Corsetti V, Pappalardo G et al. (2008). A peptide containing residues 26-44 of tau protein impairs mitochondrial oxidative phosphorylation acting at the level of the adenine nucleotide translocator. Biochim Biophys Acta 1777: 1289–1300.

    CAS  PubMed  Google Scholar 

  • Azzu V, Parker N, Brand M . (2008). High membrane potential promotes alkenal-induced mitochondrial uncoupling and influences adenine nucleotide translocase conformation. Biochem J 413: 323–332.

    CAS  PubMed  Google Scholar 

  • Baines C, Molkentin J . (2009). Adenine nucleotide translocase-1 induces cardiomyocyte death through upregulation of the pro-apoptotic protein Bax. J Mol Cell Cardiol 46: 969–977.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barath P, Poliakova D, Luciakova K, Nelson BD . (2004). Identification of NF1 as a silencer protein of the human adenine nucleotide translocase-2 gene. Eur J Biochem 271: 1781–1788.

    CAS  PubMed  Google Scholar 

  • Bauer MK, Schubert A, Rocks O, Grimm S . (1999). Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis. J Cell Biol 147: 1493–1502.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beckner M, Gobbel G, Abounader R, Burovic F, Agostino N, Laterra J et al. (2005). Glycolytic glioma cells with active glycogen synthase are sensitive to PTEN and inhibitors of PI3K and gluconeogenesis. Lab Invest 85: 1457–1470.

    CAS  PubMed  Google Scholar 

  • Bellance N, Lestienne P, Rossignol R . (2009). Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. Front Biosci 14: 4015–4034.

    Google Scholar 

  • Belzacq AS, El Hamel C, Vieira HL, Cohen I, Haouzi D, Metivier D et al. (2001a). Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite and CD437. Oncogene 20: 7579–7587.

    CAS  PubMed  Google Scholar 

  • Belzacq AS, Jacotot E, Vieira HL, Mistro D, Granville DJ, Xie Z et al. (2001b). Apoptosis induction by the photosensitizer verteporfin: identification of mitochondrial adenine nucleotide translocator as a critical target. Cancer Res 61: 1260–1264.

    CAS  PubMed  Google Scholar 

  • Belzacq AS, Vieira HL, Verrier F, Vandecasteele G, Cohen I, Prevost MC et al. (2003). Bcl-2 and Bax modulate adenine nucleotide translocase activity. Cancer Res 63: 541–546.

    CAS  PubMed  Google Scholar 

  • Beutner G, Ruck A, Riede B, Brdiczka D . (1998). Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta 1368: 7–18.

    CAS  PubMed  Google Scholar 

  • Beutner G, Ruck A, Riede B, Welte W, Brdiczka D . (1996). Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett 396: 189–195.

    CAS  PubMed  Google Scholar 

  • Bouchier-Hayes L, Lartigue L, Newmeyer DD . (2005). Mitochondria: pharmacological manipulation of cell death. J Clin Invest 115: 2640–2647.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouzier A, Voisin P, Goodwin R, Canioni P, Merle M . (1998). Glucose and lactate metabolism in C6 glioma cells: evidence for the preferential utilization of lactate for cell oxidative metabolism. Dev Neurosci 20: 331–338.

    CAS  PubMed  Google Scholar 

  • Brandolin G, Doussiere J, Gulik A, Gulik-Krzywicki T, Lauquin GJ, Vignais PV . (1980). Kinetic, binding and ultrastructural properties of the beef heart adenine nucleotide carrier protein after incorporation into phospholipid vesicles. Biochim Biophys Acta 592: 592–614.

    CAS  PubMed  Google Scholar 

  • Brenner C, Grimm S . (2006). The permeability transition pore complex and cancer cell death. Oncogene 25: 4744–4756.

    CAS  PubMed  Google Scholar 

  • Brenner C, Kniep B, Maillier E, Martel C, Franke C, Röber N et al. (2010). GD3-7-aldehyde is an apoptosis inducer and interacts with adenine nucleotide translocase. Biochem Biophys Res Commun 391: 248–253.

    CAS  PubMed  Google Scholar 

  • Brower J, Lim C, Han C, Hankowski K, Hamazaki T, Terada N . (2009a). Differential CpG island methylation of murine adenine nucleotide translocase genes. Biochim Biophys Acta 1789: 198–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brower J, Lim C, Jorgensen M, Oh S, Terada N . (2009b). Adenine nucleotide translocase 4 deficiency leads to early meiotic arrest of murine male germ cells. Reproduction 138: 463–470.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brustovetsky N, Klingenberg M . (1996). Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry 35: 8483–8488.

    CAS  PubMed  Google Scholar 

  • Cao G, Minami M, Pei W, Yan C, Chen D, O'Horo C et al. (2001). Intracellular bax translocation after transient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J Cereb Blood Flow Metab 21: 321–333.

    CAS  PubMed  Google Scholar 

  • Chen C, Ko Y, Delannoy M, Ludtke S, Chiu W, Pedersen P . (2004). Mitochondrial ATP synthasome: three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP. J Biol Chem 279: 31761–31768.

    CAS  PubMed  Google Scholar 

  • Chevrollier A, Loiseau D, Chabi B, Renier G, Douay O, Malthièry Y et al. (2005a). ANT2 isoform required for cancer cell glycolysis. J Bioenerg Biomembr 37: 307–316.

    CAS  PubMed  Google Scholar 

  • Chevrollier A, Loiseau D, Gautier F, Malthiery Y, Stepien G . (2005b). ANT2 expression under hypoxic conditions produces opposite cell-cycle behavior in 143B and HepG2 cancer cells. Mol Carcinog 42: 1–8.

    CAS  PubMed  Google Scholar 

  • Chipuk J, Green D . (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18: 157–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooney A, Tsai S, O'Malley B, Tsai M . (1992). Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol Cell Biol 12: 4153–4163.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini P, Belzacq AS, Vieira HL, Larochette N, de Pablo MA, Zamzami N et al. (2000a). Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene 19: 307–314.

    CAS  PubMed  Google Scholar 

  • Costantini P, Jacotot E, Decaudin D, Kroemer G . (2000b). Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 92: 1042–1053.

    CAS  PubMed  Google Scholar 

  • Crichton P, Parker N, Vidal-Puig A, Brand M . (2009). Not all mitochondrial carrier proteins support permeability transition pore formation: no involvement of uncoupling protein 1. Biosci Rep 30: 187–192.

    PubMed  Google Scholar 

  • Crompton M . (1999). The mitochondrial permeability transition pore and its role in cell death. Biochem J 341: 233–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Giorgi F, Lartigue L, Bauer MK, Schubert A, Grimm S, Hanson GT et al. (2002). The permeability transition pore signals apoptosis by directing Bax translocation and multimerization. FASEB J 16: 607–609.

    CAS  PubMed  Google Scholar 

  • Deniaud E, Baguet J, Mathieu A, Pagès G, Marvel J, Leverrier Y . (2006). Overexpression of Sp1 transcription factor induces apoptosis. Oncogene 25: 7096–7105.

    CAS  PubMed  Google Scholar 

  • Deniaud LBM, Lecellier G, Brenner C, Kroemer G . (2005). http://www.signaling-gateway.org/molecule/query?afcsid=A000217&mpv=prepublished. AfCS/Nature molecular pages.

  • Desagher S, Martinou JC . (2000). Mitochondria as the central control point of apoptosis. Trends Cell Biol 10: 369–377.

    CAS  PubMed  Google Scholar 

  • Doerner A, Pauschinger M, Badorff A, Noutsias M, Giessen S, Schulze K et al. (1997). Tissue-specific transcription pattern of the adenine nucleotide translocase isoforms in humans. FEBS Lett 414: 258–262.

    CAS  PubMed  Google Scholar 

  • Dolce V, Scarcia P, Iacopetta D, Palmieri F . (2005). A fourth ADP/ATP carrier isoform in man: identification, bacterial expression, functional characterization and tissue distribution. FEBS Lett 579: 633–637.

    CAS  PubMed  Google Scholar 

  • Eskes R, Antonsson B, Osensand A, Montessuit S, Richter C, Sadoul R et al. (1998). Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol 143: 217–224.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faure Vigny H, Heddi A, Giraud S, Chautard D, Stepien G . (1996). Expression of oxidative phosphorylation genes in renal tumors and tumoral cell lines. Mol Carcinog 16: 165–172.

    CAS  PubMed  Google Scholar 

  • Fulda S, Galluzzi L, Kroemer G . (2010). Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9: 447–464.

    CAS  PubMed  Google Scholar 

  • Gallerne C, Touat Z, Chen Z, Martel C, Mayola E, Sharaf el dein O et al. (2010). The fourth isoform of the adenine nucleotide translocator inhibits mitochondrial apoptosis in cancer cells. Int J Biochem Cell Biol 42: 623–629.

    CAS  PubMed  Google Scholar 

  • Gazaryan I, Brown A . (2007). Intersection between mitochondrial permeability pores and mitochondrial fusion/fission. Neurochem Res 32: 917–929.

    CAS  PubMed  Google Scholar 

  • Giraud S, Bonod-Bidaud C, Wesolowski-Louvel M, Stepien G . (1998). Expression of human ANT2 gene in highly proliferative cells: GRBOX, a new transcriptional element, is involved in the regulation of glycolytic ATP import into mitochondria. J Mol Biol 281: 409–418.

    CAS  PubMed  Google Scholar 

  • Gottlieb E, Tomlinson I . (2005). Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5: 857–866.

    CAS  PubMed  Google Scholar 

  • Griguer C, Oliva C, Gillespie G, Gobin E, Marcorelles P, Yancey Gillespie G . (2007). Pharmacologic manipulations of mitochondrial membrane potential (DeltaPsim) selectively in glioma cells. J Neurooncol 81: 9–20.

    CAS  PubMed  Google Scholar 

  • Halestrap A . (2009). What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46: 821–831.

    CAS  PubMed  Google Scholar 

  • Halestrap AP, Brenner C . (2003). The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10: 1507–1525.

    CAS  PubMed  Google Scholar 

  • Haouzi D, Cohen I, Vieira HL, Poncet D, Boya P, Castedo M et al. (2002). Mitochondrial permeability transition as a novel principle of hepatorenal toxicity in vivo. Apoptosis 7: 395–405.

    CAS  PubMed  Google Scholar 

  • Henderson P, Lardy H . (1970). Bongkrekic acid. An inhibitor of the adenine nucleotide translocase of mitochondria. J Biol Chem 245: 1319–1326.

    CAS  PubMed  Google Scholar 

  • Jacotot E, Deniaud A, Borgne-Sanchez A, Briand J, Le Bras M, Brenner C . (2006). Therapeutic peptides: targeting the mitochondrion to modulate apoptosis. Biochim Biophys Acta 1757: 1312–1323.

    CAS  PubMed  Google Scholar 

  • Jacotot E, Ferri KF, El Hamel C, Brenner C, Druillennec S, Hoebeke J et al. (2001). Control of mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein R and Bcl-2. J Exp Med 193: 509–520.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jan G, Belzacq AS, Haouzi D, Rouault A, Metivier D, Kroemer G et al. (2002). Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 9: 179–188.

    CAS  PubMed  Google Scholar 

  • Jang J, Choi Y, Jeon Y, Aung K, Kim C . (2008a). Over-expression of adenine nucleotide translocase 1 (ANT1) induces apoptosis and tumor regression in vivo. BMC Cancer 8: 160.

    PubMed  PubMed Central  Google Scholar 

  • Jang J, Choi Y, Jeon Y, Kim C . (2008b). Suppression of adenine nucleotide translocase-2 by vector-based siRNA in human breast cancer cells induces apoptosis and inhibits tumor growth in vitro and in vivo. Breast Cancer Res 10: R11.

    PubMed  PubMed Central  Google Scholar 

  • Jastroch M, Divakaruni A, Mookerjee S, Treberg J, Brand M . (2010). Mitochondrial proton and electron leaks. Essays Biochem 47: 53–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kehoe S, Oka M, Hankowski K, Reichert N, Garcia S, McCarrey J et al. (2008). A conserved E2F6-binding element in murine meiosis-specific gene promoters. Biol Reprod 79: 921–930.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khailova L, Prikhodko E, Dedukhova V, Mokhova E, Popov V, Skulachev V . (2006). Participation of ATP/ADP antiporter in oleate- and oleate hydroperoxide-induced uncoupling suppressed by GDP and carboxyatractylate. Biochim Biophys Acta 1757: 1324–1329.

    CAS  PubMed  Google Scholar 

  • Klingenberg M . (2008). The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 1778: 1978–2021.

    CAS  PubMed  Google Scholar 

  • Kroemer G, Dallaporta B, Resche-Rigon M . (1998). The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60: 619–642.

    CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C . (2007). Mitochondrial membrane permeabilization in cell death. Physiol Rev 87: 99–163.

    CAS  PubMed  Google Scholar 

  • Lauquin GJ, Brandolin G, Boulay F, Vignais PV . (1979). Purification of an atractyloside-binding protein related to the ADP/ATP transport system in yeast mitochondria. Methods Enzymol 56: 414–418.

    CAS  PubMed  Google Scholar 

  • Le Bras DA, Lecellier G, Kroemer G, Brenner C . (2005). http://www.signaling-gateway.org/molecule/query?afcsid=A000216&mpv=prepublished. AfCS/Nature molecular pages.

  • Le Bras M, Borgne-Sanchez A, Touat Z, Sharaf el dein O, Deniaud A, Maillier E et al. (2006). Chemosensitization by knock-down of adenine nucleotide translocase-2. Cancer Res 66: 9143–9152.

    CAS  PubMed  Google Scholar 

  • Lee J, Schriner S, Wallace D . (2009). Adenine nucleotide translocator 1 deficiency increases resistance of mouse brain and neurons to excitotoxic insults. Biochim Biophys Acta 1787: 364–370.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leung A, Varanyuwatana P, Halestrap A . (2008). The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem 283: 26312–26323.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Hodge J, Wallace D . (1990). OXBOX, a positive transcriptional element of the heart-skeletal muscle ADP/ATP translocator gene. J Biol Chem 265: 20585–20588.

    CAS  PubMed  Google Scholar 

  • Li K, Warner CK, Hodge JA, Minoshima S, Kudoh J, Fukuyama R et al. (1989). A human muscle adenine nucleotide translocator gene has four exons, is located on chromosome 4, and is differentially expressed. J Biol Chem 264: 13998–14004.

    CAS  PubMed  Google Scholar 

  • Li R, Hodny Z, Luciakova K, Barath P, Nelson B . (1996). Sp1 activates and inhibits transcription from separate elements in the proximal promoter of the human adenine nucleotide translocase 2 (ANT2) gene. J Biol Chem 271: 18925–18930.

    CAS  PubMed  Google Scholar 

  • Luciakova K, Kollarovic G, Barath P, Nelson B . (2008). Growth-dependent repression of human adenine nucleotide translocase-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex. Biochem J 412: 123–130.

    CAS  PubMed  Google Scholar 

  • Lunardi J, Attardi G . (1991). Differential regulation of expression of the multiple ADP/ATP translocase genes in human cells. J Biol Chem 266: 16534–16540.

    CAS  PubMed  Google Scholar 

  • Lunardi J, Hurko O, Engel WK, Attardi G . (1992). The multiple ADP/ATP translocase genes are differentially expressed during human muscle development. J Biol Chem 267: 15267–15270.

    CAS  PubMed  Google Scholar 

  • Machida K, Hayashi Y, Osada H . (2002). A novel adenine nucleotide translocase inhibitor, MT-21, induces cytochrome c release by a mitochondrial permeability transition-independent mechanism. J Biol Chem 277: 31243–31248.

    CAS  PubMed  Google Scholar 

  • Malorni W, Farrace M, Matarrese P, Tinari A, Ciarlo L, Mousavi-Shafaei P et al. (2009). The adenine nucleotide translocator 1 acts as a type 2 transglutaminase substrate: implications for mitochondrial-dependent apoptosis. Cell Death Differ 16: 1480–1492.

    CAS  PubMed  Google Scholar 

  • Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL et al. (1998a). Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281: 2027–2031.

    CAS  PubMed  Google Scholar 

  • Marzo I, Susin SA, Petit PX, Ravagnan L, Brenner C, Larochette N et al. (1998b). Caspases disrupt mitochondrial membrane barrier function. FEBS Lett 427: 198–202.

    CAS  PubMed  Google Scholar 

  • Nadtochiy S, Tompkins A, Brookes P . (2006). Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: implications for pathology and cardioprotection. Biochem J 395: 611–618.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neckelmann N, Warner C, Chung A, Kudoh J, Minoshima S, Fukuyama R et al. (1989). The human ATP synthase beta subunit gene: sequence analysis, chromosome assignment, and differential expression. Genomics 5: 829–843.

    CAS  PubMed  Google Scholar 

  • Notario B, Zamora M, Vinas O, Mampel T . (2003). All-trans-retinoic acid binds to and inhibits adenine nucleotide translocase and induces mitochondrial permeability transition. Mol Pharmacol 63: 224–231.

    CAS  PubMed  Google Scholar 

  • O'Brien T, Oliveira P, Wallace K . (2008). Inhibition of the adenine nucleotide translocator by N-acetyl perfluorooctane sulfonamides in vitro. Toxicol Appl Pharmacol 227: 184–195.

    CAS  PubMed  Google Scholar 

  • Ong S, Subrayan S, Lim S, Yellon D, Davidson S, Hausenloy D . (2010). Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121: 2012–2022.

    CAS  PubMed  Google Scholar 

  • Ortega R, García N . (2009). The flavonoid quercetin induces changes in mitochondrial permeability by inhibiting adenine nucleotide translocase. J Bioenerg Biomembr 41: 41–47.

    CAS  PubMed  Google Scholar 

  • Palmieri F, Pierri C . (2010). Mitochondrial metabolite transport. Essays Biochem 47: 37–52.

    CAS  PubMed  Google Scholar 

  • Pastorino JG, Shulga N, Hoek JB . (2002). Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277: 7610–7618.

    CAS  PubMed  Google Scholar 

  • Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin G, Brandolin G . (2003). Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426: 39–44.

    CAS  PubMed  Google Scholar 

  • Pereira C, Camougrand N, Manon S, Sousa M, Côrte-Real M . (2007). ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol Microbiol 66: 571–582.

    CAS  PubMed  Google Scholar 

  • Pereira C, Machado N, Oliveira P . (2008). Mechanisms of berberine (natural yellow 18)-induced mitochondrial dysfunction: interaction with the adenine nucleotide translocator. Toxicol Sci 105: 408–417.

    CAS  PubMed  Google Scholar 

  • Pfaff E, Heldt HW, Klingenberg M . (1969). Adenine nucleotide translocation of mitochondria. Kinetics of the adenine nucleotide exchange. Eur J Biochem 10: 484–493.

    CAS  PubMed  Google Scholar 

  • Pfaff E, Klingenberg M . (1968). Adenine nucleotide translocation of mitochondria. 1. Specificity and control. Eur J Biochem 6: 66–79.

    CAS  PubMed  Google Scholar 

  • Queiroga C, Almeida A, Martel C, Brenner C, Alves P, Vieira H . (2010). Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis. J Biol Chem 285: 17077–17088.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasola A, Sciacovelli M, Pantic B, Bernardi P . (2010). Signal transduction to the permeability transition pore. FEBS Lett 584: 1989–1996.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravagnan L, Marzo I, Costantini P, Susin SA, Zamzami N, Petit PX et al. (1999). Lonidamine triggers apoptosis via a direct, Bcl-2-inhibited effect on the mitochondrial permeability transition pore. Oncogene 18: 2537–2546.

    CAS  PubMed  Google Scholar 

  • Rial E, Rodríguez-Sánchez L, Gallardo-Vara E, Zaragoza P, Moyano E, González-Barroso M . (2010). Lipotoxicity, fatty acid uncoupling and mitochondrial carrier function. Biochim Biophys Acta 1797: 800–806.

    CAS  PubMed  Google Scholar 

  • Rodic N, Oka M, Hamazaki T, Murawski M, Jorgensen M, Maatouk D et al. (2005). DNA methylation is required for silencing of ant4, an adenine nucleotide translocase selectively expressed in mouse embryonic stem cells and germ cells. Stem Cells 23: 1314–1323.

    CAS  PubMed  Google Scholar 

  • Rodríguez-Enríquez S, Carreñño-Fuentes L, Gallardo-Pérez J, Saavedra E, Quezada H, Vega A et al. (2010). Oxidative phosphorylation is impaired by prolonged hypoxia in breast and possibly in cervix carcinoma. Int J Biochem Cell Biol 42: 1744–1751.

    PubMed  Google Scholar 

  • Rück A, Dolder M, Wallimann T, Brdiczka D . (1998). Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore. FEBS Lett 426: 97–101.

    PubMed  Google Scholar 

  • Sabová L, Zeman I, Supek F, Kolarov J . (1993). Transcriptional control of AAC3 gene encoding mitochondrial ADP/ATP translocator in Saccharomyces cerevisiae by oxygen, heme and ROX1 factor. Eur J Biochem 213: 547–553.

    PubMed  Google Scholar 

  • Schönfeld P, Jezek P, Belyaeva E, Borecký J, Slyshenkov V, Wieckowski M et al. (1996). Photomodification of mitochondrial proteins by azido fatty acids and its effect on mitochondrial energetics. Further evidence for the role of the ADP/ATP carrier in fatty-acid-mediated uncoupling. Eur J Biochem 240: 387–393.

    PubMed  Google Scholar 

  • Shen Q, Qin F, Gao Z, Cui J, Xiao H, Xu Z et al. (2009). Adenine nucleotide translocator cooperates with core cell death machinery to promote apoptosis in Caenorhabditis elegans. Mol Cell Biol 29: 3881–3893.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smiraglia D, Kulawiec M, Bistulfi G, Gupta S, Singh K . (2008). A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther 7: 1182–1190.

    CAS  PubMed  Google Scholar 

  • Stepien G, Torroni A, Chung A, Hodge J, Wallace D . (1992). Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 267: 14592–14597.

    CAS  PubMed  Google Scholar 

  • Toime L, Brand M . (2010). Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria. Free Radic Biol Med 49: 606–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verrier F, Deniaud A, LeBras M, Metivier D, Kroemer G, Mignotte B et al. (2004). Dynamic evolution of the adenine nucleotide translocase interactome during chemotherapy-induced apoptosis. Oncogene 23: 8049–8064.

    CAS  PubMed  Google Scholar 

  • Vieira HL, Boya P, Cohen I, El Hamel C, Haouzi D, Druillenec S et al. (2002). Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-X(L). Oncogene 21: 1963–1977.

    CAS  PubMed  Google Scholar 

  • Vignais P, Vignais P, Defaye G . (1973). Adenosine diphosphate translocation in mitochondria. Nature of the receptor site for carboxyatractyloside (gummiferin). Biochemistry 12: 1508–1519.

    CAS  PubMed  Google Scholar 

  • Vyssokikh M, Brdiczka D . (2003). The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim Pol 50: 389–404.

    CAS  PubMed  Google Scholar 

  • Vyssokikh MY, Katz A, Rueck A, Wuensch C, Dorner A, Zorov DB et al. (2001). Adenine nucleotide translocator isoforms 1 and 2 are differently distributed in the mitochondrial inner membrane and have distinct affinities to cyclophilin D. Biochem J 358: 349–358.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O, Posener K, Negelein E . (1924). Ueber den Stoffwechsel der Tumoren. Biochemische Zeitschrift 152: 319–344.

    Google Scholar 

  • Warburg O . (1956). The origin of cancer cells. Science 123: 309–314.

    CAS  PubMed  Google Scholar 

  • Watabe M, Machida K, Osada H . (2000). MT-21 is a synthetic apoptosis inducer that directly induces cytochrome c release from mitochondria. Cancer Res 60: 5214–5222.

    CAS  PubMed  Google Scholar 

  • Weaver JGR TA, Le Bras M, Deniaud A, Brenner C, Phenix BN, Miller B et al. (2005). Protective effect of HIV protease inhibitors on apoptosis in vivo. J Clin Inves 115: 1828–1838.

    Google Scholar 

  • Zamarin D, Garcia-Sastre A, Xiao X, Wang R, Palese P . (2005). Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog 1: e4.

    PubMed  PubMed Central  Google Scholar 

  • Zamora M, Granell M, Mampel T, Vinas O . (2004a). Adenine nucleotide translocase 3 (ANT3) overexpression induces apoptosis in cultured cells. FEBS Lett 563: 155–160.

    CAS  PubMed  Google Scholar 

  • Zamora M, Merono C, Vinas O, Mampel T . (2004b). Recruitment of NF-kappaB into mitochondria is involved in adenine nucleotide translocase 1 (ANT1)-induced apoptosis. J Biol Chem 279: 38415–38423.

    CAS  PubMed  Google Scholar 

  • Zhivotovsky B, Galluzzi L, Kepp O, Kroemer G . (2009). Adenine nucleotide translocase: a component of the phylogenetically conserved cell death machinery. Cell Death Differ 16: 1419–1425.

    CAS  PubMed  Google Scholar 

  • Zoratti M, Szabo I . (1994). Electrophysiology of the inner mitochondrial membrane. J Bioenerg Biomembr 26: 543–553.

    CAS  PubMed  Google Scholar 

  • Zoratti M, Szabo I . (1995). The mitochondrial permeability transition. Biochim Biophys Acta 1241: 139–176.

    PubMed  Google Scholar 

  • Zoratti M, Szabo I, De Marchi U . (2005). Mitochondrial permeability transitions: how many doors to the house? Biochim Biophys Acta 1706: 40–52.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of CB and CP are supported by le Centre National de la Recherche Scientifique (CNRS) and l’Agence Nationale de la Recherche (ANR, ANR-08PCVI-0008-01). CB is also supported by l’Institut National pour le Cancer (INCa, 2008-1-PL BIO-04-CNS ON1) and l’Université Paris Sud (Programme Attractivité). CB thanks M Nunez for the help in the preparation of Figure 2 and current and past laboratory members for their invaluable contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Brenner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenner, C., Subramaniam, K., Pertuiset, C. et al. Adenine nucleotide translocase family: four isoforms for apoptosis modulation in cancer. Oncogene 30, 883–895 (2011). https://doi.org/10.1038/onc.2010.501

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.501

Keywords

This article is cited by

Search

Quick links