Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SPARC functions as an anti-stress factor by inactivating p53 through Akt-mediated MDM2 phosphorylation to promote melanoma cell survival

Abstract

Aberrant expression of Secreted Protein Acidic and Rich in Cysteine (SPARC)/osteonectin has been associated with an invasive tumor cell phenotype and poor outcome in human melanomas. Although it is known that SPARC controls melanoma tumorigenesis, the precise role of SPARC in melanoma cell survival is still unclear. Here, we show that SPARC has a cell-autonomous survival activity, which requires Akt-dependent regulation of p53. Suppression of SPARC by RNA interference in several human melanoma cells and xenografted A375 tumors triggers apoptotic cell death through the mitochondrial intrinsic pathway and activation of caspase-3. Cell death induced by depletion of SPARC is dependent on p53 and induction of Bax, and results in the generation of ROS. Stabilization of p53 in SPARC-depleted cells is associated with a decrease in Akt-mediated activating phosphorylation of MDM2. Inhibition of Akt signaling pathway is important for the observed changes as overexpression of constitutively active Akt protects cells against apoptosis induced by SPARC depletion. Conversely, increased expression of SPARC stimulates Akt and MDM2 phosphorylation, thus facilitating p53 degradation. Finally, we show that overexpression of SPARC renders cells more resistant to the p53-mediated cytotoxic effects of the DNA-damaging drug actinomycin-D. Our study indicates that SPARC functions through activation of Akt and MDM2 to limit p53 levels and that acquired expression of SPARC during melanoma development would confer survival advantages through suppression of p53-dependent apoptotic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Albino AP, Vidal MJ, McNutt NS, Shea CR, Prieto VG, Nanus DM et al. (1994). Mutation and expression of the p53 gene in human malignant melanoma. Melanoma Res 4: 35–45.

    Article  CAS  Google Scholar 

  • Arnold SA, Brekken RA . (2009). SPARC: a matricellular regulator of tumorigenesis. J Cell Commun Signal 3: 255–273.

    Article  Google Scholar 

  • Ashcroft M, Ludwig RL, Woods DB, Copeland TD, Weber HO, MacRae EJ et al. (2002). Phosphorylation of HDM2 by Akt. Oncogene 21: 1955–1962.

    Article  CAS  Google Scholar 

  • Bailet O, Fenouille N, Abbe P, Robert G, Rocchi S, Gonthier N et al. (2009). Spleen tyrosine kinase functions as a tumor suppressor in melanoma cells by inducing senescence-like growth arrest. Cancer Res 69: 2748–2756.

    Article  CAS  Google Scholar 

  • Barker TH, Baneyx G, Cardo-Vila M, Workman GA, Weaver M, Menon PM et al. (2005). SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. J Biol Chem 280: 36483–36493.

    Article  CAS  Google Scholar 

  • Bornstein P, Sage EH . (2002). Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 14: 608–616.

    Article  CAS  Google Scholar 

  • Briggs J, Chamboredon S, Castellazzi M, Kerry JA, Bos TJ . (2002). Transcriptional upregulation of SPARC, in response to c-Jun overexpression, contributes to increased motility and invasion of MCF7 breast cancer cells. Oncogene 21: 7077–7091.

    Article  CAS  Google Scholar 

  • Chang W, Wei K, Jacobs SS, Upadhyay D, Weill D, Rosen GD . (2010). SPARC suppresses apoptosis of idiopathic pulmonary fibrosis fibroblasts through constitutive activation of beta-catenin. J Biol Chem 285: 8196–8206.

    Article  CAS  Google Scholar 

  • Choong ML, Yang H, Lee MA, Lane DP . (2009). Specific activation of the p53 pathway by low dose actinomycin D: a new route to p53 based cyclotherapy. Cell Cycle 8: 2810–2818.

    Article  CAS  Google Scholar 

  • De S, Chen J, Narizhneva NV, Heston W, Brainard J, Sage EH et al. (2003). Molecular pathway for cancer metastasis to bone. J Biol Chem 278: 39044–39050.

    Article  CAS  Google Scholar 

  • Fenouille N, Puissant A, Dufies M, Robert G, Jacquel A, Ohanna M et al. (2010). Persistent activation of the Fyn/ERK kinase signaling axis mediates imatinib resistance in chronic myelogenous leukemia cells through upregulation of intracellular SPARC. Cancer Res 70: 9659–9670.

    Article  CAS  Google Scholar 

  • Fenouille N, Robert G, Tichet M, Puissant A, Dufies M, Rocchi S et al. (2011). The p53/p21(Cip1/Waf1) pathway mediates the effects of SPARC on melanoma cell cycle progression. Pigment Cell Melanoma Res 24: 219–232.

    Article  CAS  Google Scholar 

  • Fukunaga-Kalabis M, Santiago-Walker A, Herlyn M . (2008). Matricellular proteins produced by melanocytes and melanomas: in search for functions. Cancer Microenviron 1: 93–102.

    Article  Google Scholar 

  • Gaggioli C, Deckert M, Robert G, Abbe P, Batoz M, Ehrengruber MU et al. (2005). HGF induces fibronectin matrix synthesis in melanoma cells through MAP kinase-dependent signaling pathway and induction of Egr-1. Oncogene 24: 1423–1433.

    Article  CAS  Google Scholar 

  • Honda R, Tanaka H, Yasuda H . (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420: 25–27.

    Article  CAS  Google Scholar 

  • Horie K, Tsuchihara M, Nakatsura T . (2010). Silencing of secreted protein acidic and rich in cysteine inhibits the growth of human melanoma cells with G arrest induction. Cancer Sci 101: 913–919.

    Article  CAS  Google Scholar 

  • Johnson TM, Yu ZX, Ferrans VJ, Lowenstein RA, Finkel T . (1996). Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci USA 93: 11848–11852.

    Article  CAS  Google Scholar 

  • Johnstone RW, Ruefli AA, Lowe SW . (2002). Apoptosis: a link between cancer genetics and chemotherapy. Cell 108: 153–164.

    Article  CAS  Google Scholar 

  • Khwaja FW, Svoboda P, Reed M, Pohl J, Pyrzynska B, Van Meir EG . (2006). Proteomic identification of the wt-p53-regulated tumor cell secretome. Oncogene 25: 7650–7661.

    Article  CAS  Google Scholar 

  • Lavin MF, Gueven N . (2006). The complexity of p53 stabilization and activation. Cell Death Differ 13: 941–950.

    Article  CAS  Google Scholar 

  • Ledda F, Bravo AI, Adris S, Bover L, Mordoh J, Podhajcer OL . (1997a). The expression of the secreted protein acidic and rich in cysteine (SPARC) is associated with the neoplastic progression of human melanoma. J Invest Dermatol 108: 210–214.

    Article  CAS  Google Scholar 

  • Ledda MF, Adris S, Bravo AI, Kairiyama C, Bover L, Chernajovsky Y et al. (1997b). Suppression of SPARC expression by antisense RNA abrogates the tumorigenicity of human melanoma cells. Nat Med 3: 171–176.

    Article  CAS  Google Scholar 

  • Madhunapantula SV, Robertson GP . (2009). The PTEN–AKT3 signaling cascade as a therapeutic target in melanoma. Pigment Cell Melanoma Res 22: 400–419.

    Article  CAS  Google Scholar 

  • Marine JC, Francoz S, Maetens M, Wahl G, Toledo F, Lozano G . (2006). Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ 13: 927–934.

    Article  CAS  Google Scholar 

  • Massi D, Franchi A, Borgognoni L, Reali UM, Santucci M . (1999). Osteonectin expression correlates with clinical outcome in thin cutaneous malignant melanomas. Hum Pathol 30: 339–344.

    Article  CAS  Google Scholar 

  • Mayo LD, Donner DB . (2001). A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 98: 11598–11603.

    Article  CAS  Google Scholar 

  • Mettouchi A, Cabon F, Montreau N, Vernier P, Mercier G, Blangy D et al. (1994). SPARC and thrombospondin genes are repressed by the c-jun oncogene in rat embryo fibroblasts. EMBO J 13: 5668–5678.

    Article  CAS  Google Scholar 

  • Miller AJ, Mihm Jr MC . (2006). Melanoma. N Engl J Med 355: 51–65.

    Article  CAS  Google Scholar 

  • Miyashita T, Reed JC . (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299.

    Article  CAS  Google Scholar 

  • Montgomery AM, Reisfeld RA, Cheresh DA . (1994). Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci USA 91: 8856–8860.

    Article  CAS  Google Scholar 

  • Nie J, Chang B, Traktuev DO, Sun J, March K, Chan L et al. (2008). IFATS collection: combinatorial peptides identify alpha5beta1 integrin as a receptor for the matricellular protein SPARC on adipose stromal cells. Stem Cells 26: 2735–2745.

    Article  CAS  Google Scholar 

  • Nie J, Sage EH . (2009). SPARC functions as an inhibitor of adipogenesis. J Cell Commun Signal 3: 247–254.

    Article  Google Scholar 

  • Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K et al. (2002). Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 277: 21843–21850.

    Article  CAS  Google Scholar 

  • Portela M, Casas-Tinto S, Rhiner C, Lopez-Gay JM, Dominguez O, Soldini D et al. (2010). Drosophila SPARC is a self-protective signal expressed by loser cells during cell competition. Dev Cell 19: 562–573.

    Article  CAS  Google Scholar 

  • Robert G, Gaggioli C, Bailet O, Chavey C, Abbe P, Aberdam E et al. (2006). SPARC represses E-cadherin and induces mesenchymal transition during melanoma development. Cancer Res 66: 7516–7523.

    Article  CAS  Google Scholar 

  • Sage H, Tupper J, Bramson R . (1986). Endothelial cell injury in vitro is associated with increased secretion of an Mr 43 000 glycoprotein ligand. J Cell Physiol 127: 373–387.

    Article  CAS  Google Scholar 

  • Sangaletti S, Di Carlo E, Gariboldi S, Miotti S, Cappetti B, Parenza M et al. (2008). Macrophage-derived SPARC bridges tumor cell–extracellular matrix interactions toward metastasis. Cancer Res 68: 9050–9059.

    Article  CAS  Google Scholar 

  • Schuler M, Green DR . (2001). Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 29: 684–688.

    Article  CAS  Google Scholar 

  • Shi Q, Bao S, Maxwell JA, Reese ED, Friedman HS, Bigner DD et al. (2004). Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation. J Biol Chem 279: 52200–52209.

    Article  CAS  Google Scholar 

  • Shi Q, Bao S, Song L, Wu Q, Bigner DD, Hjelmeland AB et al. (2007). Targeting SPARC expression decreases glioma cellular survival and invasion associated with reduced activities of FAK and ILK kinases. Oncogene 26: 4084–4094.

    Article  CAS  Google Scholar 

  • Smalley KS, Contractor R, Haass NK, Kulp AN, Atilla-Gokcumen GE, Williams DS et al. (2007). An organometallic protein kinase inhibitor pharmacologically activates p53 and induces apoptosis in human melanoma cells. Cancer Res 67: 209–217.

    Article  CAS  Google Scholar 

  • Smit DJ, Gardiner BB, Sturm RA . (2007). Osteonectin downregulates E-cadherin, induces osteopontin and focal adhesion kinase activity stimulating an invasive melanoma phenotype. Int J Cancer 121: 2653–2660.

    Article  CAS  Google Scholar 

  • Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X et al. (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409: 207–211.

    Article  CAS  Google Scholar 

  • Soengas MS, Lowe SW . (2003). Apoptosis and melanoma chemoresistance. Oncogene 22: 3138–3151.

    Article  CAS  Google Scholar 

  • Stromblad S, Becker JC, Yebra M, Brooks PC, Cheresh DA . (1996). Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis. J Clin Invest 98: 426–433.

    Article  CAS  Google Scholar 

  • Sturm RA, Satyamoorthy K, Meier F, Gardiner BB, Smit DJ, Vaidya B et al. (2002). Osteonectin/SPARC induction by ectopic beta(3) integrin in human radial growth phase primary melanoma cells. Cancer Res 62: 226–232.

    CAS  PubMed  Google Scholar 

  • Tang MJ, Tai IT . (2007). A novel interaction between procaspase 8 and SPARC enhances apoptosis and potentiates chemotherapy sensitivity in colorectal cancers. J Biol Chem 282: 34457–34467.

    Article  CAS  Google Scholar 

  • Tuveson DA, Weber BL, Herlyn M . (2003). BRAF as a potential therapeutic target in melanoma and other malignancies. Cancer Cell 4: 95–98.

    Article  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  Google Scholar 

  • Weaver MS, Workman G, Sage EH . (2008). The copper binding domain of SPARC mediates cell survival in vitro via interaction with integrin beta1 and activation of integrin-linked kinase. J Biol Chem 283: 22826–22837.

    Article  CAS  Google Scholar 

  • Weiss J, Schwechheimer K, Cavenee WK, Herlyn M, Arden KC . (1993). Mutation and expression of the p53 gene in malignant melanoma cell lines. Int J Cancer 54: 693–699.

    Article  CAS  Google Scholar 

  • Yiu GK, Chan WY, Ng SW, Chan PS, Cheung KK, Berkowitz RS et al. (2001). SPARC (secreted protein acidic and rich in cysteine) induces apoptosis in ovarian cancer cells. Am J Pathol 159: 609–622.

    Article  CAS  Google Scholar 

  • Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC . (2001). HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3: 973–982.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by INSERM (Institut National de la Santé et de la Recherche Médicale) and grant 1136 from ARC (Association pour la Recherche sur le Cancer). S Tartare-Deckert is a recipient of a Contrat d'Interface Clinique, Service de Dermatologie, CHU de Nice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Tartare-Deckert.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenouille, N., Puissant, A., Tichet, M. et al. SPARC functions as an anti-stress factor by inactivating p53 through Akt-mediated MDM2 phosphorylation to promote melanoma cell survival. Oncogene 30, 4887–4900 (2011). https://doi.org/10.1038/onc.2011.198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.198

Keywords

This article is cited by

Search

Quick links