Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis

Abstract

Sphingosine kinase 1 (SK1) catalyses the formation of bioactive phospholipid sphingosine 1-phosphate (S1P). Elevated cellular SK1 activity and S1P levels enhance cell proliferation and survival, and are strongly implicated in tumourigenesis. Regulation of SK1 activity can occur through various mechanisms, including phosphorylation and protein–protein interactions. We have previously shown that eukaryotic elongation factor 1A (eEF1A) interacts with and directly activates SK1, but the mechanisms regulating this were undefined. Notably, eEF1A has GTPase activity and can exist in GTP- or GDP-bound forms, which are associated with distinct structural conformations of the protein. Here, we show that the guanine nucleotide-bound state of eEF1A regulates its ability to activate SK1, with eEF1A.GDP, but not eEF1A.GTP, enhancing SK1 activity in vitro. Furthermore, we show that enhancing cellular eEF1A.GDP levels through expression of a guanine nucleotide dissociation inhibitor of eEF1A, translationally controlled tumour protein (TCTP), increased SK1 activity in cells. We also examined a truncated isoform of eEF1A1, termed prostate tumour inducer-1 (PTI-1), which can induce neoplastic cell transformation through undefined mechanisms. PTI-1 lacks the G protein domain of eEF1A1 and is therefore unable to undergo the GTP-binding-induced conformational change. Notably, we found that PTI-1 can directly activate SK1 and that this seems to be essential for neoplastic transformation induced by PTI-1, as chemical SK1 inhibitors or overexpression of a dominant-negative SK1 blocked this process. Thus, this study defines the mechanism regulating eEF1A-mediated SK1 activation, and also establishes SK1 as being integral for PTI-1-induced oncogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abbott CM, Proud CG . (2004). Translation factors: in sickness and in health. Trends Biochem Sci 26: 25–31.

    Article  Google Scholar 

  • Al-Maghrebi M, Anim JT, Olalu AA . (2005). Up-regulation of eukaryotic elongation factor-1 subunits in breast carcinoma. Anticancer Res 25: 2573–2577.

    CAS  Google Scholar 

  • Andersen GR, Nissen P, Nyborg J . (2003). Elongation factors in protein biosynthesis. Trends Biochem Sci 28: 434–441.

    Article  CAS  Google Scholar 

  • Andersen GR, Pedersen L, Valente L, Chatterjee I, Kinzy TG, Kjeldgaard M et al. (2000). Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Bα. Mol Cell 6: 1261–1266.

    Article  CAS  Google Scholar 

  • Cans C, Passer BJ, Shalak V, Nancy-Portebois V, Crible V, Amzallag N et al. (2003). Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc Natl Acad Sci USA 100: 13892–13897.

    Article  CAS  Google Scholar 

  • Cuvillier O . (2008). Downregulating sphingosine kinase-1 for cancer therapy. Expert Opin Ther Targets 12: 1009–1020.

    Article  CAS  Google Scholar 

  • Ejiri S . (2002). Moonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1-associated nuclear localization. Biosci Biotechnol Biochem 66: 1–21.

    Article  CAS  Google Scholar 

  • French KJ, Schrecengost RS, Lee BD, Zhuang Y, Smith SN, Eberly JL et al. (2003). Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 63: 5962–5969.

    CAS  Google Scholar 

  • Gopalkrishnan RV, Su Z-z, Goldstein NI, Fisher PB . (1999). Translational infidelity and human cancer: role of the PTI-1 oncogene. Int J Biochem Cell Biol 31: 151–162.

    Article  CAS  Google Scholar 

  • Hait NC, Oskeritzian CA, Paugh SW, Milstein S, Spiegel S . (2006). Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta 1758: 2016–2026.

    Article  CAS  Google Scholar 

  • Kahns S, Lund A, Kristensen P, Knudsen CR, Clark BF, Cavallius J et al. (1998). The elongation factor 1 A-2 isoform from rabbit: cloning of the cDNA and characterization of the protein. Nucleic Acids Res 26: 1884–1890.

    Article  CAS  Google Scholar 

  • Kawamori T, Kaneshiro T, Okumura M, Maalouf S, Uflacker A, Bielawski J et al. (2009). Role for Sphingosine kinase 1 in colon carcinogenesis. FASEB J 23: 405–414.

    Article  CAS  Google Scholar 

  • Kohno M, Momoi M, Oo ML, Paik JH, Lee YM, Venkataraman K et al. (2006). Intracellular role for sphingosine kinase 1 in intestinal adenoma cell proliferation. Mol Cell Biol 26: 7211–7223.

    Article  CAS  Google Scholar 

  • Leclercq T, Morretti PA, Vadas M, Pitson SM . (2008). Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. J Biol Chem 283: 9606–9614.

    Article  CAS  Google Scholar 

  • Lee JM . (2003). The role of protein elongation factor eEF1A2 in ovarian cancer. Reprod Biol Endocrinol 1: 69–73.

    Article  Google Scholar 

  • Liu H, Peng HW, Cheng YS, Yuan HS, Yang-Yen HF . (2005). Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol 25: 3117–3126.

    Article  CAS  Google Scholar 

  • Mansilla F, Friis I, Jadidi M, Nielsen KM, Clark BF, Knudsen CR . (2002). Mapping the human translation elongation factor eEF1H complex using the yeast two-hybrid system. Biochem J 365: 669–676.

    Article  CAS  Google Scholar 

  • Mansilla F, Hansen LL, Jakobsen H, Kjeldgaard NO, Clark BFC, Knudsen CR . (2005). Deconstructing PTI-1: PTI-1 is a truncated, but not mutated, from of translation elongation factor 1A1, eEF1A1. Biochim Biophys Acta 1727: 116–124.

    Article  CAS  Google Scholar 

  • Panasyuk G, Nemazanyy I, Filonenko V, Negrutskii B, El′skaya AV . (2008). A2 isoform of mammalian translation factor eEF1A displays increased tyrosine phosphorylation and ability to interact with different signalling molecules. Int J Biochem Cell Biol 40: 63–71.

    Article  CAS  Google Scholar 

  • Pitson SM, D′Andrea RJ, Vandeleur L, Moretti PA, Xia P, Gamble JR et al. (2000). Expression of a catalytically inactive sphingosine kinase mutant blocks agonist-induced sphingosine kinase activation. A dominant-negative sphingosine kinase. J Biol Chem 350: 429–441.

    CAS  Google Scholar 

  • Pitson SM, Moretti PAB, Zebol JR, Lynn HE, Xia P, Vadas MA et al. (2003). Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 22: 5491–5500.

    Article  CAS  Google Scholar 

  • Pitson SM, Moretti PAB, Zebol JR, Zareie R, Derian CK, Darrow AL et al. (2002). The nucleotide-binding site of human sphingosine kinase 1. J Biol Chem 277: 49545–49553.

    Article  CAS  Google Scholar 

  • Pitson SM, Xia P, Leclercq TM, Moretti PA, Zebol JR, Lynn HE et al. (2005). Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signaling. J Exp Med 201: 49–54.

    Article  CAS  Google Scholar 

  • Roberts JL, Moretti PA, Darrow AL, Derian CK, Vadas MA, Pitson SM . (2004). An assay for sphingosine kinase activity using biotinylated sphingosine and streptavidin-coated membranes. Anal Biochem 331: 122–129.

    Article  CAS  Google Scholar 

  • Satoh T, Endo M, Nakafuku M, Nakamura S, Kaziro Y . (1990). Platelet-derived growth factor stimulates formation of active p21ras.GTP complex in Swiss mouse 3T3 cells. Proc Natl Acad Sci USA 87: 5993–5997.

    Article  CAS  Google Scholar 

  • Soares DC, Barlow PN, Newbery HJ, Porteous DJ, Abbott CM . (2009). Structural models of human eEF1A1 and eEF1A2 reveal two distinct surface clusters of sequence variation and potential differences in phosphorylation. PLoS One 4: e6315.

    Article  Google Scholar 

  • Sprang SR . (1997). G protein mechanisms: insights from structural biology. Annu Rev Biochem 66: 639–678.

    Article  CAS  Google Scholar 

  • Su Z, Goldstein NI, Pisher PB . (1998). Antisense inhibition of the PTI-1 oncogene reverses cancer phenotypes. Proc Natl Acad Sci USA 95: 1764–1769.

    Article  CAS  Google Scholar 

  • Susini L, Besse S, Duflaut D, Lespagnol A, Beekman C, Fiucci G et al. (2008). TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 15: 1211–1220.

    Article  CAS  Google Scholar 

  • Taha TA, Hannun YA, Obeid LM . (2006). Sphingosine kinase: biochemical and cellular regulation and role in disease. J Biochem Mol Biol 39: 113–131.

    CAS  Google Scholar 

  • Thornton S, Anand N, Purcell D, Lee J . (2003). Not just for housekeeping: protein initiation and elongation factors in cell growth and tumourigenesis. J Mol Med 81: 536–548.

    Article  CAS  Google Scholar 

  • Tuynder M, Fiucci G, Prieur S, Lespagnol A, GĂ©ant A, Beaucourt S et al. (2004). Translationally controlled tumor protein is a target of tumor reversion. Proc Natl Acad Sci USA 101: 15364–15369.

    Article  CAS  Google Scholar 

  • Tuynder M, Susini L, Prieur S, Besse S, Fiucci G, Amson R et al. (2002). Biological models and genes of tumor reversion: Cellular reprogramming through tpt1/TCTP and SIAH-1. Proc Natl Acad Sci USA 99: 14976–14981.

    Article  CAS  Google Scholar 

  • Xia P, Gamble JR, Wang L, Pitson SM, Moretti PA, Wattenberg BW et al. (2000). An oncogenic role of sphingosine kinase. Curr Biol 10: 1527–1530.

    Article  CAS  Google Scholar 

  • Yu L, Wu G, Wang L, Wang H, Zhang G . (2006). Transient reduction of PTI-1 expression by short interfering RNAs inhibits the growth of human prostate cancer cell lines. Tohoku J Exp Med 209: 141–148.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fay Fuller Foundation, an Australian Postgraduate Award (to TML), Project Grant 399330 from the Cancer Council of South Australia and a Senior Research Fellowship from the National Health and Medical Research Council of Australia (to SMP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Pitson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leclercq, T., Moretti, P. & Pitson, S. Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis. Oncogene 30, 372–378 (2011). https://doi.org/10.1038/onc.2010.420

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.420

Keywords

This article is cited by

Search

Quick links