Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A previously unrecognized promoter of LMO2 forms part of a transcriptional regulatory circuit mediating LMO2 expression in a subset of T-acute lymphoblastic leukaemia patients

Abstract

The T-cell oncogene Lim-only 2 (LMO2) critically influences both normal and malignant haematopoiesis. LMO2 is not normally expressed in T cells, yet ectopic expression is seen in the majority of T-acute lymphoblastic leukaemia (T-ALL) patients with specific translocations involving LMO2 in only a subset of these patients. Ectopic lmo2 expression in thymocytes of transgenic mice causes T-ALL, and retroviral vector integration into the LMO2 locus was implicated in the development of clonal T-cell disease in patients undergoing gene therapy. Using array-based chromatin immunoprecipitation, we now demonstrate that in contrast to B-acute lymphoblastic leukaemia, human T-ALL samples largely use promoter elements with little influence from distal enhancers. Active LMO2 promoter elements in T-ALL included a previously unrecognized third promoter, which we demonstrate to be active in cell lines, primary T-ALL patients and transgenic mice. The ETS factors ERG and FLI1 previously implicated in lmo2-dependent mouse models of T-ALL bind to the novel LMO2 promoter in human T-ALL samples, while in return LMO2 binds to blood stem/progenitor enhancers in the FLI1 and ERG gene loci. Moreover, LMO2, ERG and FLI1 all regulate the +1 enhancer of HHEX/PRH, which was recently implicated as a key mediator of early progenitor expansion in LMO2-driven T-ALL. Our data therefore suggest that a self-sustaining triad of LMO2/ERG/FLI1 stabilizes the expression of important mediators of the leukaemic phenotype such as HHEX/PRH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Appert A, Nam CH, Lobato N, Priego E, Miguel RN, Blundell T et al. (2009). Targeting LMO2 with a peptide aptamer establishes a necessary function in overt T-cell neoplasia. Cancer Res 69: 4784–4790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asnafi V, Beldjord K, Libura M, Villarese P, Millien C, Ballerini P et al. (2004). Age-related phenotypic and oncogenic differences in T-cell acute lymphoblastic leukemias may reflect thymic atrophy. Blood 104: 4173–4180.

    Article  CAS  PubMed  Google Scholar 

  • Baldus CD, Burmeister T, Martus P, Schwartz S, Gokbuget N, Bloomfield CD et al. (2006). High expression of the ETS transcription factor ERG predicts adverse outcome in acute T-lymphoblastic leukemia in adults. J Clin Oncol 24: 4714–4720.

    Article  CAS  PubMed  Google Scholar 

  • Baldus CD, Martus P, Burmeister T, Schwartz S, Gokbuget N, Bloomfield CD et al. (2007). Low ERG and BAALC expression identifies a new subgroup of adult acute T-lymphoblastic leukemia with a highly favorable outcome. J Clin Oncol 25: 3739–3745.

    Article  CAS  PubMed  Google Scholar 

  • Boehm T, Foroni L, Kaneko Y, Perutz MF, Rabbitts TH . (1991). The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci USA 88: 4367–4371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohne A, Schlee C, Mossner M, Thibaut J, Heesch S, Thiel E et al. (2009). Epigenetic control of differential expression of specific ERG isoforms in acute T-lymphoblastic leukemia. Leuk Res 33: 817–822.

    Article  CAS  PubMed  Google Scholar 

  • Chan WY, Follows GA, Lacaud G, Pimanda JE, Landry JR, Kinston S et al. (2007). The paralogous hematopoietic regulators Lyl1 and Scl are coregulated by Ets and GATA factors, but Lyl1 cannot rescue the early Scl−/− phenotype. Blood 109: 1908–1916.

    Article  CAS  PubMed  Google Scholar 

  • Chiaretti S, Li X, Gentleman R, Vitale A, Vignetti M, Mandelli F et al. (2004). Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood 103: 2771–2778.

    Article  CAS  PubMed  Google Scholar 

  • Crable SC, Anderson KP . (2003). A PAR domain transcription factor is involved in the expression from a hematopoietic-specific promoter for the human LMO2 gene. Blood 101: 4757–4764.

    Article  CAS  PubMed  Google Scholar 

  • Crist WM, Pui CH . (1993). Clinical implications of cytogenetic and molecular analyses of pediatric acute lymphoblastic leukemia. Stem Cells 11: 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Dave UP, Akagi K, Tripathi R, Cleveland SM, Thompson MA, Yi M et al. (2009). Murine leukemias with retroviral insertions at Lmo2 are predictive of the leukemias induced in SCID-X1 patients following retroviral gene therapy. PLoS Genet 5: e1000491.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donaldson IJ, Chapman M, Kinston S, Landry JR, Knezevic K, Piltz S et al. (2005). Genome-wide identification of cis-regulatory sequences controlling blood and endothelial development. Hum Mol Genet 14: 595–601.

    Article  CAS  PubMed  Google Scholar 

  • Ferrando AA, Herblot S, Palomero T, Hansen M, Hoang T, Fox EA et al. (2004). Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Blood 103: 1909–1911.

    Article  CAS  PubMed  Google Scholar 

  • Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. (2002). Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  • Follows GA, Dhami P, Gottgens B, Bruce AW, Campbell PJ, Dillon SC et al. (2006). Identifying gene regulatory elements by genomic microarray mapping of DNaseI hypersensitive sites. Genome Res 16: 1310–1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garand R, Bene MC . (1993). Incidence, clinical and laboratory features, and prognostic significance of immunophenotypic subgroups in acute lymphoblastic leukemia: the GEIL experience. Recent Results Cancer Res 131: 283–295.

    Article  CAS  PubMed  Google Scholar 

  • Gottgens B, Broccardo C, Sanchez MJ, Deveaux S, Murphy G, Gothert JR et al. (2004). The scl +18/19 stem cell enhancer is not required for hematopoiesis: identification of a 5′ bifunctional hematopoietic-endothelial enhancer bound by Fli-1 and Elf-1. Mol Cell Biol 24: 1870–1883.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E et al. (2008). Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118: 3132–3142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E et al. (2003a). A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348: 255–256.

    Article  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. (2003b). LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  • Hammond SM, Crable SC, Anderson KP . (2005). Negative regulatory elements are present in the human LMO2 oncogene and may contribute to its expression in leukemia. Leuk Res 29: 89–97.

    Article  CAS  PubMed  Google Scholar 

  • Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H et al. (2008). Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118: 3143–3150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Brown C, Ni W, Maynard E, Rigby AC, Oettgen P . (2006). Critical role for the Ets transcription factor ELF-1 in the development of tumor angiogenesis. Blood 107: 3153–3160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadrmas JL, Beckerle MC . (2004). The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol 5: 920–931.

    Article  CAS  PubMed  Google Scholar 

  • Kruse EA, Loughran SJ, Baldwin TM, Josefsson EC, Ellis S, Watson DK et al. (2009). Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage. Proc Natl Acad Sci 106: 13814–13819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landry JR, Bonadies N, Kinston S, Knezevic K, Wilson NK, Oram SH et al. (2009). Expression of the leukemia oncogene Lmo2 is controlled by an array of tissue-specific elements dispersed over 100 kb and bound by Tal1/Lmo2, Ets, and Gata factors. Blood 113: 5783–5792.

    Article  CAS  PubMed  Google Scholar 

  • Landry JR, Kinston S, Knezevic K, Donaldson IJ, Green AR, Gottgens B . (2005). Fli1, Elf1, and Ets1 regulate the proximal promoter of the LMO2 gene in endothelial cells. Blood 106: 2680–2687.

    Article  CAS  PubMed  Google Scholar 

  • Larson RC, Lavenir I, Larson TA, Baer R, Warren AJ, Wadman I et al. (1996). Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO J 15: 1021–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson RC, Osada H, Larson TA, Lavenir I, Rabbitts TH . (1995). The oncogenic LIM protein Rbtn2 causes thymic developmental aberrations that precede malignancy in transgenic mice. Oncogene 11: 853–862.

    CAS  PubMed  Google Scholar 

  • Lock RB, Liem N, Farnsworth ML, Milross CG, Xue C, Tajbakhsh M et al. (2002). The nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of childhood acute lymphoblastic leukemia reveals intrinsic differences in biologic characteristics at diagnosis and relapse. Blood 99: 4100–4108.

    Article  CAS  PubMed  Google Scholar 

  • MacArthur BD, Ma'ayan A, Lemischka IR . (2009). Systems biology of stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol 10: 672–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormack MP, Young LF, Vasudevan S, de Graaf CA, Codrington R, Rabbitts TH et al. (2010). The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal. Science 327: 879–883.

    Article  CAS  PubMed  Google Scholar 

  • Noy P, Williams H, Sawasdichai A, Gaston K, Jayaraman P-S . (2010). PRH/Hhex controls cell survival through coordinate transcriptional regulation of vascular endothelial growth factor signaling. Mol Cell Biol 30: 2120–2134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osada H, Grutz G, Axelson H, Forster A, Rabbitts TH . (1995). Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1. Proc Natl Acad Sci USA 92: 9585–9589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimanda JE, Ottersbach K, Knezevic K, Kinston S, Chan WY, Wilson NK et al. (2007). Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc Natl Acad Sci USA 104: 17692–17697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabbitts TH, Axelson H, Forster A, Grutz G, Lavenir I, Larson R et al. (1997). Chromosomal translocations and leukaemia: a role for LMO2 in T cell acute leukaemia, in transcription and in erythropoiesis. Leukemia 11 (Suppl 3): 271–272.

    PubMed  Google Scholar 

  • Raimondi SC . (2007). T-lineage acute lymphoblastic leukemia (T-ALL). Atlas Genet Cytogenet Oncol Haematol 11: 69–81.

    Google Scholar 

  • Royer-Pokora B, Loos U, Ludwig WD . (1991). TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene 6: 1887–1893.

    CAS  PubMed  Google Scholar 

  • Royer-Pokora B, Rogers M, Zhu TH, Schneider S, Loos U, Bolitz U . (1995). The TTG-2/RBTN2T cell oncogene encodes two alternative transcripts from two promoters: the distal promoter is removed by most 11p13 translocations in acute T cell leukaemia's (T-ALL). Oncogene 10: 1353–1360.

    CAS  PubMed  Google Scholar 

  • Valge-Archer V, Forster A, Rabbitts TH . (1998). The LMO1 and LDB1 proteins interact in human T cell acute leukaemia with the chromosomal translocation t(11;14)(p15;q11). Oncogene 17: 3199–3202.

    Article  CAS  PubMed  Google Scholar 

  • van Grotel M, Meijerink JP, van Wering ER, Langerak AW, Beverloo HB, Buijs-Gladdines JG et al. (2008). Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia 22: 124–131.

    Article  CAS  PubMed  Google Scholar 

  • Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A et al. (1997). The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 16: 3145–3157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren AJ, Colledge WH, Carlton MB, Evans MJ, Smith AJ, Rabbitts TH . (1994). The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 78: 45–57.

    Article  CAS  PubMed  Google Scholar 

  • Wilson NK, Miranda-Saavedra D, Kinston S, Bonadies N, Foster SD, Calero-Nieto F et al. (2009). The transcriptional program controlled by the stem cell leukemia gene Scl/Tal1 during early embryonic hematopoietic development. Blood 113: 5456–5465.

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Warren AJ, Dobson C, Forster A, Pannell R, Rabbitts TH . (1998). The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc Natl Acad Sci USA 95: 3890–3895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R et al. (2002). Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Kay Kendall Leukaemia Fund, Medical Research Council, Cancer Research UK, National Health and Research Council of Australia, the National Institute for Health Research Cambridge Biomedical Research Centre and Leukaemia and Lymphoma Research UK for grant funding. We are grateful to Michelle Hammet and Tina Hamilton for assistance with pronuclear microinjections and to Professor Sally Kinsey, Leeds Teaching Hospitals, for assistance with sourcing patient material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Göttgens.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oram, S., Thoms, J., Pridans, C. et al. A previously unrecognized promoter of LMO2 forms part of a transcriptional regulatory circuit mediating LMO2 expression in a subset of T-acute lymphoblastic leukaemia patients. Oncogene 29, 5796–5808 (2010). https://doi.org/10.1038/onc.2010.320

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.320

Keywords

This article is cited by

Search

Quick links