Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rb inactivation accelerates neoplastic growth and substitutes for recurrent amplification of cIAP1, cIAP2 and Yap1 in sporadic mammary carcinoma associated with p53 deficiency

A Correction to this article was published on 28 January 2021

This article has been updated

Abstract

Genetically defined mouse models offer an important tool to identify critical secondary genetic alterations with relevance to human cancer pathogenesis. We used newly generated MMTV-Cre105Ayn mice to inactivate p53 and/or Rb strictly in the mammary epithelium, and to determine recurrent genomic changes associated with deficiencies of these genes. p53 inactivation led to formation of estrogen receptor-positive raloxifene-responsive mammary carcinomas with features of luminal subtype B. Rb deficiency was insufficient to initiate carcinogenesis but promoted genomic instability and growth rate of neoplasms associated with p53 inactivation. Genome-wide analysis of mammary carcinomas identified a recurrent amplification at chromosome band 9A1, a locus orthologous to human 11q22, which contains protooncogenes cIAP1 (Birc2), cIAP2 (Birc3) and Yap1. It is interesting that this amplicon was preferentially detected in carcinomas carrying wild-type Rb. However, all three genes were overexpressed in carcinomas with p53 and Rb inactivation, likely due to E2F-mediated transactivation, and cooperated in carcinogenesis according to gene knockdown experiments. These findings establish a model of luminal subtype B mammary carcinoma, identify critical role of cIAP1, cIAP2 and Yap1 co-expression in mammary carcinogenesis and provide an explanation for the lack of recurrent amplifications of cIAP1, cIAP2 and Yap1 in some tumors with frequent Rb deficiency, such as mammary carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Change history

References

  • Borresen-Dale AL . (2003). TP53 and breast cancer. Hum Mutat 21: 292–300.

    Article  CAS  PubMed  Google Scholar 

  • Bosco EE, Knudsen ES . (2007). RB in breast cancer: at the crossroads of tumorigenesis and treatment. Cell Cycle 6: 667–671.

    Article  CAS  PubMed  Google Scholar 

  • Burkhart DL, Sage J . (2008). Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8: 671–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ et al. (2000). The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19: 968–988.

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Jiang X, Ito Y, Bringas P, Han J, Rowitch DH et al. (2000). Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127: 1671–1679.

    CAS  PubMed  Google Scholar 

  • Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B et al. (2006). Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10: 437–449.

    Article  CAS  PubMed  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Flesken-Nikitin A, Choi KC, Eng JP, Shmidt EN, Nikitin AY . (2003). Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res 63: 3459–3463.

    CAS  PubMed  Google Scholar 

  • Frasor J, Weaver A, Pradhan M, Dai Y, Miller LD, Lin CY et al. (2009). Positive cross-talk between estrogen receptor and NF-kappaB in breast cancer. Cancer Res 69: 8918–8925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geradts J, Wilson PA . (1996). High frequency of aberrant p16(INK4A) expression in human breast cancer. Am J Pathol 149: 15–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M et al. (2004). Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430: 797–802.

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF et al. (2006). The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7: 96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ . (2009). Cancer Statistics, 2009. CA Cancer J Clin 59: 225–249.

    Article  PubMed  Google Scholar 

  • Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM . (2000). Fate of the mammalian cardiac neural crest. Development 127: 1607–1616.

    CAS  PubMed  Google Scholar 

  • Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A . (2001). Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29: 418–425.

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Gans JD, Nogueira C, Wang A, Paik JH, Feng B et al. (2006). Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125: 1269–1281.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen ES, Sexton CR, Mayhew CN . (2006). Role of the retinoblastoma tumor suppressor in the maintenance of genome integrity. Curr Mol Med 6: 749–757.

    CAS  PubMed  Google Scholar 

  • Kuperwasser C, Hurlbut GD, Kittrell FS, Dickinson ES, Laucirica R, Medina D et al. (2000). Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. Am J Pathol 157: 2151–2159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG . (2008). IAP-targeted therapies for cancer. Oncogene 27: 6252–6275.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Lewis B, Capuco AV, Laucirica R, Furth PA . (2000). WAP-TAg transgenic mice and the study of dysregulated cell survival, proliferation, and mutation during breast carcinogenesis. Oncogene 19: 1010–1019.

    Article  CAS  PubMed  Google Scholar 

  • Lin SC, Lee KF, Nikitin AY, Hilsenbeck SG, Cardiff RD, Li A et al. (2004). Somatic mutation of p53 leads to estrogen receptor α-positive and -negative mouse mammary tumors with high frequency of metastasis. Cancer Res 64: 3525–3532.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Holstege H, van der Gulden H, Treur-Mulder M, Zevenhoven J, Velds A et al. (2007). Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci USA 104: 12111–12116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma O, Cai WW, Zender L, Dayaram T, Shen J, Herron AJ et al. (2009). MMP13, Birc2 (cIAP1), and Birc3 (cIAP2), amplified on chromosome 9, collaborate with p53 deficiency in mouse osteosarcoma progression. Cancer Res 69: 2559–2567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malkin D . (1994). Germline p53 mutations and heritable cancer. Annu Rev Genet 28: 443–465.

    Article  CAS  PubMed  Google Scholar 

  • Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A . (2000). Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 14: 994–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maser RS, Choudhury B, Campbell PJ, Feng B, Wong KK, Protopopov A et al. (2007). Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447: 966–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayhew CN, Bosco EE, Fox SR, Okaya T, Tarapore P, Schwemberger SJ et al. (2005). Liver-specific pRB loss results in ectopic cell cycle entry and aberrant ploidy. Cancer Res 65: 4568–4577.

    Article  CAS  PubMed  Google Scholar 

  • Mayhew CN, Carter SL, Fox SR, Sexton CR, Reed CA, Srinivasan SV et al. (2007). RB loss abrogates cell cycle control and genome integrity to promote liver tumorigenesis. Gastroenterology 133: 976–984.

    Article  CAS  PubMed  Google Scholar 

  • Meek DW . (2009). Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 9: 714–723.

    Article  CAS  PubMed  Google Scholar 

  • Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M et al. (2004). Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res 32: e109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC et al. (2006). Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA 103: 12405–12410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickering MT, Kowalik TF . (2006). Rb inactivation leads to E2F1-mediated DNA double-strand break accumulation. Oncogene 25: 746–755.

    Article  CAS  PubMed  Google Scholar 

  • Reed CA, Mayhew CN, McClendon AK, Yang X, Witkiewicz A, Knudsen ES . (2009). RB has a critical role in mediating the in vivo checkpoint response, mitigating secondary DNA damage and suppressing liver tumorigenesis initiated by aflatoxin B1. Oncogene 28: 4434–4443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A . (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402–412.

    Article  CAS  PubMed  Google Scholar 

  • Robinson GW, Wagner KU, Hennighausen L . (2001). Functional mammary gland development and oncogene-induced tumor formation are not affected by the absence of the retinoblastoma gene. Oncogene 20: 7115–7119.

    Article  CAS  PubMed  Google Scholar 

  • Roy PG, Thompson AM . (2006). Cyclin D1 and breast cancer. Breast 15: 718–727.

    Article  PubMed  Google Scholar 

  • Scambia G, Lovergine S, Masciullo V . (2006). RB family members as predictive and prognostic factors in human cancer. Oncogene 25: 5302–5308.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, McCormick F . (2002). The RB and p53 pathways in cancer. Cancer Cell 2: 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ . (2004). Principles of tumor suppression. Cell 116: 235–246.

    Article  CAS  PubMed  Google Scholar 

  • Simin K, Wu H, Lu L, Pinkel D, Albertson D, Cardiff RD et al. (2004). pRb inactivation in mammary cells reveals common mechanisms for tumor initiation and progression in divergent epithelia. PLoS Biol 2: E22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10869–10874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100: 8418–8423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sporn MB, Dowsett SA, Mershon J, Bryant HU . (2004). Role of raloxifene in breast cancer prevention in postmenopausal women: clinical evidence and potential mechanisms of action. Clin Ther 26: 830–840.

    Article  CAS  PubMed  Google Scholar 

  • Steinhardt AA, Gayyed MF, Klein AP, Dong J, Maitra A, Pan D et al. (2008). Expression of Yes-associated protein in common solid tumors. Hum Pathol 39: 1582–1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV . (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369: 669–671.

    Article  CAS  PubMed  Google Scholar 

  • Wijnhoven SW, Zwart E, Speksnijder EN, Beems RB, Olive KP, Tuveson DA et al. (2005). Mice expressing a mammary gland-specific R270H mutation in the p53 tumor suppressor gene mimic human breast cancer development. Cancer Res 65: 8166–8173.

    Article  CAS  PubMed  Google Scholar 

  • Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J et al. (2006). Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125: 1253–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW, Roy-Burman P et al. (2006). Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res 66: 7889–7898.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Flesken-Nikitin A, Nikitin AY . (2007). Prostate cancer associated with p53 and Rb deficiency arises from the stem/progenitor cell-enriched proximal region of prostatic ducts. Cancer Res 67: 5683–5690.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank David C Corney for critical reading of this paper and Dr Anton Berns (Netherlands Cancer Institute, Amsterdam, The Netherlands) for the generous gift of the p53floxP/floxP and RbfloxP/floxP mice. This work was supported by grants R01 CA96823 (NIH/NCI) and C023050 (NYSTEM) to AYN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Y Nikitin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, L., Zhou, Z., Flesken-Nikitin, A. et al. Rb inactivation accelerates neoplastic growth and substitutes for recurrent amplification of cIAP1, cIAP2 and Yap1 in sporadic mammary carcinoma associated with p53 deficiency. Oncogene 29, 5700–5711 (2010). https://doi.org/10.1038/onc.2010.300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.300

Keywords

This article is cited by

Search

Quick links