Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MLK3 is critical for breast cancer cell migration and promotes a malignant phenotype in mammary epithelial cells

Abstract

The malignant phenotype in breast cancer is driven by aberrant signal transduction pathways. Mixed-lineage kinase-3 (MLK3) is a mammalian mitogen-activated protein kinase kinase kinase (MAP3K) that activates multiple MAPK pathways. Depending on the cellular context, MLK3 has been implicated in apoptosis, proliferation, migration and differentiation. Here we investigated the effect of MLK3 and its signaling to MAPKs in the acquisition of malignancy in breast cancer. We show that MLK3 is highly expressed in breast cancer cells. We provide evidence that MLK3's catalytic activity and signaling to c-jun N-terminal kinase (JNK) is required for migration of highly invasive breast cancer cells and for MLK3-induced migration of mammary epithelial cells. Expression of active MLK3 is sufficient to induce the invasion of mammary epithelial cells, which requires AP-1 activity and is accompanied by the expression of several proteins corresponding to AP-1-regulated invasion genes. To assess MLK3's contribution to the breast cancer malignant phenotype in a more physiological setting, we implemented a strategy to inducibly express active MLK3 in the preformed acini of MCF10A cells grown in 3D Matrigel. Induction of MLK3 expression dramatically increases acinar size and modestly perturbs apicobasal polarity. Remarkably, MLK3 expression induces luminal repopulation and suppresses the expression of the pro-apoptotic protein BimEL, as has been observed in Her2/Neu-expressing acini. Taken together, our data show that MLK3–JNK–AP-1 signaling is critical for breast cancer cell migration and invasion. Our current study uncovers both a proliferative and novel antiapoptotic role for MLK3 in the acquisition of a malignant phenotype in mammary epithelial cells. Thus, MLK3 may be an important therapeutic target for the treatment of invasive breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Bergers G, Graninger P, Braselmann S, Wrighton C, Busslinger M . (1995). Transcriptional activation of the fra-1 gene by AP-1 is mediated by regulatory sequences in the first intron. Mol Cell Biol 15: 3748–3758.

    Article  CAS  Google Scholar 

  • Blick T, Widodo E, Hugo H, Waltham M, Lenburg ME, Neve RM et al. (2008). Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis 25: 629–642.

    Article  CAS  Google Scholar 

  • Bock BC, Vacratsis PO, Qamirani E, Gallo KA . (2000). Cdc42-induced activation of the mixed-lineage kinase SPRK in vivo. Requirement of the Cdc42/Rac interactive binding motif and changes in phosphorylation. J Biol Chem 275: 14231–14241.

    Article  CAS  Google Scholar 

  • Brown PH, Alani R, Preis LH, Szabo E, Birrer MJ . (1993). Suppression of oncogene-induced transformation by a deletion mutant of c-jun. Oncogene 8: 877–886.

    CAS  PubMed  Google Scholar 

  • Chadee DN, Kyriakis JM . (2004). MLK3 is required for mitogen activation of B-Raf, ERK and cell proliferation. Nat Cell Biol 6: 770–776.

    Article  CAS  Google Scholar 

  • Chambers AF . (2009). MDA-MB-435 and M14 cell lines: identical but not M14 melanoma? Cancer Res 69: 5292–5293.

    Article  CAS  Google Scholar 

  • Ching YP, Leong VY, Lee MF, Xu HT, Jin DY, Ng IO . (2007). P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res 67: 3601–3608.

    Article  CAS  Google Scholar 

  • Cui X, Kim HJ, Kuiatse I, Kim H, Brown PH, Lee AV . (2006). Epidermal growth factor induces insulin receptor substrate-2 in breast cancer cells via c-Jun NH(2)-terminal kinase/activator protein-1 signaling to regulate cell migration. Cancer Res 66: 5304–5313.

    Article  CAS  Google Scholar 

  • Debnath J, Brugge JS . (2005). Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5: 675–688.

    Article  CAS  Google Scholar 

  • Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS . (2002). The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111: 29–40.

    Article  CAS  Google Scholar 

  • Debnath J, Muthuswamy SK, Brugge JS . (2003). Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30: 256–268.

    Article  CAS  Google Scholar 

  • Dhillon AS, Hagan S, Rath O, Kolch W . (2007). MAP kinase signalling pathways in cancer. Oncogene 26: 3279–3290.

    Article  CAS  Google Scholar 

  • Du Y, Bock BC, Schachter KA, Chao M, Gallo KA . (2005). Cdc42 induces activation loop phosphorylation and membrane targeting of mixed lineage kinase 3. J Biol Chem 280: 42984–42993.

    Article  CAS  Google Scholar 

  • Gallo KA, Mark MR, Scadden DT, Wang ZY, Gu QM, Godowski PJ . (1994). Identification and characterization of SPRK, a novel src-homology 3 domain-containing proline-rich kinase with serine/threonine kinase activity. J Biol Chem 269: 15092–15100.

    CAS  PubMed  Google Scholar 

  • Gallo KA, Johnson GL . (2002). Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 3: 663–672.

    Article  CAS  Google Scholar 

  • Goicoechea SM, Bednarski B, Garcia-Mata R, Prentice-Dunn H, Kim HJ, Otey CA . (2009). Palladin contributes to invasive motility in human breast cancer cells. Oncogene 28: 587–598.

    Article  CAS  Google Scholar 

  • Hall JP, Davis RJ . (2002). Inhibition of the p38 pathway upregulates macrophage JNK and ERK activities, and the ERK, JNK, and p38 MAP kinase pathways are reprogrammed during differentiation of the murine myeloid M1 cell line. J Cell Biochem 86: 1–11.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Jacinto A, Woolner S, Martin P . (2002). Dynamic analysis of dorsal closure in Drosophila: from genetics to cell biology. Dev Cell 3: 9–19.

    Article  CAS  Google Scholar 

  • Johnson GL, Lapadat R . (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911–1912.

    Article  CAS  Google Scholar 

  • Johung K, Goodwin EC, DiMaio D . (2007). Human papillomavirus E7 repression in cervical carcinoma cells initiates a transcriptional cascade driven by the retinoblastoma family, resulting in senescence. J Virol 81: 2102–2116.

    Article  CAS  Google Scholar 

  • Karin M . (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270: 16483–16486.

    Article  CAS  Google Scholar 

  • Khatlani TS, Wislez M, Sun M, Srinivas H, Iwanaga K, Ma L et al. (2007). c-Jun N-terminal kinase is activated in non-small-cell lung cancer and promotes neoplastic transformation in human bronchial epithelial cells. Oncogene 26: 2658–2666.

    Article  CAS  Google Scholar 

  • Lee GY, Kenny PA, Lee EH, Bissell MJ . (2007). Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4: 359–365.

    Article  CAS  Google Scholar 

  • Lester RD, Jo M, Campana WM, Gonias SL . (2005). Erythropoietin promotes MCF-7 breast cancer cell migration by an ERK/mitogen-activated protein kinase-dependent pathway and is primarily responsible for the increase in migration observed in hypoxia. J Biol Chem 280: 39273–39277.

    Article  CAS  Google Scholar 

  • Leung IW, Lassam N . (1998). Dimerization via tandem leucine zippers is essential for the activation of the mitogen-activated protein kinase kinase kinase, MLK-3. J Biol Chem 273: 32408–32415.

    Article  CAS  Google Scholar 

  • Minet E, Michel G, Mottet D, Piret JP, Barbieux A, Raes M et al. (2001). c-JUN gene induction and AP-1 activity is regulated by a JNK-dependent pathway in hypoxic HepG2 cells. Exp Cell Res 265: 114–124.

    Article  CAS  Google Scholar 

  • Murakata C, Kaneko M, Gessner G, Angeles TS, Ator MA, O′Kane TM et al. (2002). Mixed lineage kinase activity of indolocarbazole analogues. Bioorg Med Chem Lett 12: 147–150.

    Article  CAS  Google Scholar 

  • Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS . (2001). ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 3: 785–792.

    Article  CAS  Google Scholar 

  • Nielsen DL, Andersson M, Kamby C . (2009). HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors. Cancer Treat Rev 35: 121–136.

    Article  CAS  Google Scholar 

  • Nihalani D, Meyer D, Pajni S, Holzman LB . (2001). Mixed lineage kinase-dependent JNK activation is governed by interactions of scaffold protein JIP with MAPK module components. EMBO J 20: 3447–3458.

    Article  CAS  Google Scholar 

  • Ory DS, Neugeboren BA, Mulligan RC . (1996). A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci USA 93: 11400–11406.

    Article  CAS  Google Scholar 

  • Polyak K, Weinberg RA . (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9: 265–273.

    Article  CAS  Google Scholar 

  • Radvanyi L, Singh-Sandhu D, Gallichan S, Lovitt C, Pedyczak A, Mallo G et al. (2005). The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer. Proc Natl Acad Sci USA 102: 11005–11010.

    Article  CAS  Google Scholar 

  • Reginato MJ, Mills KR, Becker E, Bonni A, Lynch D, Muthuswamy SK et al. (2005). Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes. Mol Cell Biol 25: 4591–4601.

    Article  CAS  Google Scholar 

  • Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al. (2007). Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9: 166–180.

    Article  CAS  Google Scholar 

  • Rittling SR, Coutinho L, Amram T, Kolbe M . (1989). AP-1/jun binding sites mediate serum inducibility of the human vimentin promoter. Nucleic Acids Res 17: 1619–1633.

    Article  CAS  Google Scholar 

  • Rizki A, Mott JD, Bissell MJ . (2007). Polo-like kinase 1 is involved in invasion through extracellular matrix. Cancer Res 67: 11106–11110.

    Article  CAS  Google Scholar 

  • Schachter KA, Du Y, Lin A, Gallo KA . (2006). Dynamic positive feedback phosphorylation of mixed lineage kinase 3 by JNK reversibly regulates its distribution to Triton-soluble domains. J Biol Chem 281: 19134–19144.

    Article  CAS  Google Scholar 

  • Shacka JJ, Sahawneh MA, Gonzalez JD, Ye YZ, D'Alessandro TL, Estévez AG . (2006). Two distinct signaling pathways regulate peroxynitrite-induced apoptosis in PC12 cells. Cell Death Differ 13: 1506–1514.

    Article  CAS  Google Scholar 

  • Shaw KR, Wrobel CN, Brugge JS . (2004). Use of three-dimensional basement membrane cultures to model oncogene-induced changes in mammary epithelial morphogenesis. J Mammary Gland Biol Neoplasia 9: 297–310.

    Article  Google Scholar 

  • Simpson KJ, Selfors LM, Bui J, Reynolds A, Leake D, Khvorova A et al. (2008). Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nat Cell Biol 10: 1027–1038.

    Article  CAS  Google Scholar 

  • Sommers CL, Byers SW, Thompson EW, Torri JA, Gelmann EP . (1994a). Differentiation state and invasiveness of human breast cancer cell lines. Breast Cancer Res Treat 31: 325–335.

    Article  CAS  Google Scholar 

  • Sommers CL, Skerker JM, Chrysogelos SA, Bosseler M, Gelmann EP . (1994b). Regulation of vimentin gene transcription in human breast cancer cell lines. Cell Growth Differ 5: 839–846.

    CAS  PubMed  Google Scholar 

  • Stronach B, Perrimon N . (2002). Activation of the JNK pathway during dorsal closure in Drosophila requires the mixed lineage kinase, slipper. Genes Dev 16: 377–387.

    Article  CAS  Google Scholar 

  • Su S, Li Y, Luo Y, Sheng Y, Su Y, Padia RN et al. (2009). Proteinase-activated receptor 2 expression in breast cancer and its role in breast cancer cell migration. Oncogene 28: 3047–3057.

    Article  CAS  Google Scholar 

  • Swenson-Fields KI, Sandquist JC, Rossol-Allison J, Blat IC, Wennerberg K, Burridge K et al. (2008). MLK3 limits activated Galphaq signaling to Rho by binding to p63RhoGEF. Mol Cell 32: 43–56.

    Article  CAS  Google Scholar 

  • Teramoto H, Coso OA, Miyata H, Igishi T, Miki T, Gutkind JS . (1996). Signaling from the small GTP-binding proteins Rac1 and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J Biol Chem 271: 27225–27228.

    Article  CAS  Google Scholar 

  • Timoshenko AV, Rastogi S, Lala PK . (2007). Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cells. Br J Cancer 97: 1090–1098.

    Article  CAS  Google Scholar 

  • Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, Kennedy NJ et al. (2007). Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 11: 555–569.

    Article  CAS  Google Scholar 

  • Wagner EF, Nebreda AR . (2009). Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9: 537–549.

    Article  CAS  Google Scholar 

  • Wilsbacher JL, Moores SL, Brugge JS . (2006). An active form of Vav1 induces migration of mammary epithelial cells by stimulating secretion of an epidermal growth factor receptor ligand. Cell Commun Signal 4: 5.

    Article  Google Scholar 

  • Vacratsis PO, Gallo KA . (2000). Zipper-mediated oligomerization of the mixed lineage kinase SPRK/MLK-3 is not required for its activation by the GTPase cdc 42 but is necessary for its activation of the JNK pathway. Monomeric SPRK L410P does not catalyze the activating phosphorylation of Thr258 of murine mitogen activated protein kinase kinase 4. J Biol Chem 275: 27893–27900.

    CAS  PubMed  Google Scholar 

  • Yeh YT, Hou MF, Chung YF, Chen YJ, Yang SF, Chen DC et al. (2006). Decreased expression of phosphorylated JNK in breast infiltrating ductal carcinoma is associated with a better overall survival. Int J Cancer 118: 2678–2684.

    Article  CAS  Google Scholar 

  • Young PR, McLaughlin MM, Kumar S, Kassis S, Doyle ML, McNulty D et al. Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site##(1997). J Biol Chem 272: 12116–12121.

    Article  CAS  Google Scholar 

  • Zajchowski DA, Bartholdi MF, Gong Y, Webster L, Liu HL, Munishkin A et al. (2001). Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res 61: 5168–5178.

    CAS  PubMed  Google Scholar 

  • Zhang H, Gallo KA . (2001). Autoinhibition of mixed lineage kinase 3 through its Src homology 3 domain. J Biol Chem 276: 45598–45603.

    Article  CAS  Google Scholar 

  • Zhang H, Wu W, Du Y, Santos SJ, Conrad SE, Watson JT et al. (2004). Hsp90/p50cdc37 is required for mixed-lineage kinase (MLK) 3 signaling. J Biol Chem 279: 19457–19463.

    Article  CAS  Google Scholar 

  • Zhang J, Yang PL, Gray NS . (2009). Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9: 28–39.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by an MSU-Health and Biomedical Research Institute seed grant (KAG HBRI-729) and a DoD Breast Cancer Idea Award (KAG BC085020). Confocal microscopes were provided through the MSU Center for Advanced Microscopy. We are grateful to Cephalon Inc. for CEP-11004; Ariad Pharmaceuticals for AP21967 and for parental inducible expression vectors; Richard Mulligan (Harvard Medical School) for the 293GPG packaging cell line and Daniel DiMaio (Yale Cancer Center) for the pBabe-Tam67 construct. We thank Mauricio Reginato (Drexel University) for advice on Bim immunoblotting and Bradley Smith (Department of Physiology, MSU) for help with the morphometric analysis of the MCF10A cells grown in 3D culture. We appreciate the constructive input from the members of the MSU-Breast Cancer Signaling Networks Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K A Gallo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Miller, E. & Gallo, K. MLK3 is critical for breast cancer cell migration and promotes a malignant phenotype in mammary epithelial cells. Oncogene 29, 4399–4411 (2010). https://doi.org/10.1038/onc.2010.198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.198

Keywords

This article is cited by

Search

Quick links