Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells

Abstract

The p53 protein is the most studied tumor suppressor and the p53 pathway has been shown to mediate cellular stress responses that are disrupted when cancer develops. After DNA damage, p53 is activated as transcription factor to directly induce the expression of target genes involved in cell-cycle arrest, DNA repair, senescence and, importantly, apoptosis. Post-translational modifications of p53 are essential for the activation of p53 and for selection of target genes. The tumor suppressor homeodomain-interacting protein kinase-2 (HIPK2) is a crucial regulator of p53 apoptotic function by phosphorylating its N-terminal serine 46 (Ser46) and facilitating Lys382 acetylation at the C-terminus. HIPK2 is activated by numerous genotoxic agents and can be deregulated in tumors by several conditions including hypoxia. Recent findings suggest that HIPK2 active/inactive protein can affect p53 function in multiple and unexpected ways. This makes p53 as well as HIPK2 interesting targets for cancer therapy. Hence, understanding the role of HIPK2 as p53 activator may provide important insights in the process of tumor progression, and may also serve as the crucial point in the diagnostic and therapeutical aspects of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Al-Beiti MA, Lu X . (2008). Expression of HIPK2 in cervical cancer: correlation with clinicopathology and prognosis. Aust NZJ Obstet Gynecol 48: 329–336.

    Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB . (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760.

    Article  CAS  PubMed  Google Scholar 

  • Barlev NA, Liu L, Chahab NH, Mansfield K, Harris KG, Halaxonetis TD et al. (2001). Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferase. Mol Cell 8: 1243–1254.

    CAS  PubMed  Google Scholar 

  • Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC, Xavier RJ . (2009). An integrative genomics approach identifies hypoxia inducible factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucl Acid Res 37: 4587–4602.

    CAS  Google Scholar 

  • Bernardi R, Pandolfi PP . (2007). Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8: 1006–1016.

    CAS  PubMed  Google Scholar 

  • Bode AM, Dong Z . (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4: 793–805.

    Article  CAS  PubMed  Google Scholar 

  • Britos-Bray M, Ramirez M, Cao W, Wang X, Liu PP, Civin CI et al. (1998). CBFβ-SMMHC, expressed in M4eo acute myeloid leukaemia, reduces p53 induction and slows apoptosis in hematopoietic cells exposed to DNA-damaging agents. Blood 92: 4344–4352.

    CAS  PubMed  Google Scholar 

  • Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP . (2009). Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 9: 862–873.

    CAS  PubMed  Google Scholar 

  • Calzado MA, Renner F, Roscic A, Schmitz ML . (2007). HIPK2: a versatile switchboard regulating the transcription machinery and cell death. Cell Cycle 6: 139–143.

    CAS  PubMed  Google Scholar 

  • Calzado MA, de la Vega L, Moller A, Bowtell DD, Schmitz ML . (2009a). An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nat Cell Biol 11: 85–91.

    CAS  PubMed  Google Scholar 

  • Calzado MA, de la Vega L, Munoz E, Schmitz ML . (2009b). Autoregulatory control of the p53 response by Siah-1L-mediated HIPK2 degradation. Biol Chem 390: 1079–1083.

    CAS  PubMed  Google Scholar 

  • Cecchinelli B, Lavra L, Rinaldo C, Iacovelli S, Gurtner A, Gasbarri A et al. (2006). Repression of the anti-apoptotic molecule Galectin-3 by HIPK2-activated p53 is required for p53-induced apoptosis. Mol Cell Biol 26: 4746–4757.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho YJ, Gorina PD, Jeffrey A, Pavletich NP . (1994). Crystal structure of a p53 tumor suppressor DNA complex: understanding tumorigenic mutations. Science 265: 346–355.

    CAS  PubMed  Google Scholar 

  • Choi DW, Seo YM, Kim EA, Sung KS, Ahn JW, Park SJ et al. (2008). Ubiquitination and degradation of homeodomain-interacting protein kinase-2 by WD40 repeat/SOCS box protein WSB-1. J Biol Chem 283: 4682–4689.

    CAS  PubMed  Google Scholar 

  • D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S et al. (2002). Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser46 and mediates apoptosis. Nat Cell Biol 4: 11–19.

    CAS  PubMed  Google Scholar 

  • D′Orazi G, Sciulli MG, Di Stefano V, Riccioni S, Frattini M, Falcioni R et al. (2006). Homeodomain-interacting protein kinase-2 restrains cytosolic phospholipase A2-dependent prostaglandin E2 generation in human colorectal cancer cells. Clin Cancer Res 12: 735–741.

    PubMed  Google Scholar 

  • Dauth I, Kruger J, Hofmann TG . (2007). Homeodomain-interacting protein kinase 2 is the ionizing radiation-activated p53 serine 46 kinase and is regulated by ATM. Cancer Res 67: 2274–2279.

    CAS  PubMed  Google Scholar 

  • Deshmukh H, Yeh TH, Yu J, Sharma MK, Perry A, Leonard JR et al. (2008). High-resolution, dual-platform aCGH analysis reveals frequent HIPK2 amplification and increased expression in pilocytic astrocytomas. Oncogene 27: 4745–4751.

    CAS  PubMed  Google Scholar 

  • Di Lello P, Jenkins LM, Jones TN, Nguyen BD, Hara T, Yamaguchi H et al. (2006). Structure of the Tfb1/p53 complex: insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol Cell 22: 731–740.

    CAS  PubMed  Google Scholar 

  • Di Stefano V, Rinaldo C, Sacchi A, Soddu S, D'Orazi G . (2004a). Homeodomain-interacting protein kinase-2 activity and p53 phosphorylation are critical events for cisplatin-mediated apoptosis. Exp Cell Res 293: 311–320.

    CAS  PubMed  Google Scholar 

  • Di Stefano V, Blandino G, Sacchi A, Soddu S, D'Orazi G . (2004b). HIPK2 neutralizes MDM2 inhibition by rescuing p53 transcriptional activity and apoptotic function. Oncogene 23: 5185–5192.

    CAS  PubMed  Google Scholar 

  • Di Stefano V, Mattiussi M, Sacchi A, D'Orazi G . (2005a). HIPK2 inhibits both MDM2 gene and protein by, respectively, p53-dependent and independent regulations. FEBS Lett 579: 5473–5480.

    CAS  PubMed  Google Scholar 

  • Di Stefano V, Soddu S, Sacchi A, D'Orazi G . (2005b). HIPK2 contributes to PCAF-mediated p53 acetylation and selective transactivation of p21WAF1 after nonapoptotic DNA damage. Oncogene 24: 5431–5442.

    CAS  PubMed  Google Scholar 

  • Espinosa JM, Emerson BM . (2001). Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Cell 8: 57–69.

    CAS  Google Scholar 

  • Gresko E, Roscic A, Ritterhoff S, Vichalkovski A, Del Sal G, Schmitz ML . (2006). Autoinhibitory control of the p53 response by caspase-mediated processing of HIPK2. EMBO J 25: 1883–1894.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu W, Roeder RG . (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminus domain. Cell 90: 595–606.

    Article  CAS  PubMed  Google Scholar 

  • Hainaut P, Milner J . (1993). A structural role for metal ions in the ‘wild-type’ conformation of the tumor suppressor protein p53. Cancer Res 53: 1739–1742.

    CAS  PubMed  Google Scholar 

  • Haldar SM, Lu Y, Jeyaraj D, Kawanami D, Cui Y, Eapen SJ et al. (2010). Klf15 deficiency is a molecular link between heart failure and aortic aneurysm formation. Sci Translat Med 2: 1–10.

    Google Scholar 

  • Harris SL, Levine AJ . (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24: 2899–2908.

    CAS  PubMed  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M . (1997). Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.

    CAS  PubMed  Google Scholar 

  • Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W et al. (2002). Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4: 1–10.

    CAS  PubMed  Google Scholar 

  • Isono K, Nemoto K, Li Y, Takada Y, Suzuki R, Katsuki M et al. (2006). Overlapping roles for homeodomain-interacting protein kinases hipk1 and hipk2 in the mediation of cell growth in response to morphogenetic and genotoxic signals. Mol Cell Biol 26: 2758–2771.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M et al. (2004). Small molecule RIRA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 10: 1321–1328.

    CAS  PubMed  Google Scholar 

  • Joenger AC, Fersht AR . (2007). Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene 26: 2226–2242.

    Google Scholar 

  • Kamata T . (2009). Roles of Nox1 and other Nox isoforms in cancer development. Cancer Sci 100: 1382–1388.

    CAS  PubMed  Google Scholar 

  • Kikuchi A . (1999). Roles of Axin in the Wnt signaling pathways. Cell Signal 11: 777–788.

    CAS  PubMed  Google Scholar 

  • Kim YH, Choi CY, Lee SJ, Conti MA, Kim Y . (1998). Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. J Biol Chem 273: 25875–25879.

    CAS  PubMed  Google Scholar 

  • Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A et al. (2006). Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173: 533–544.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komiyama S, Taniguchi S, Matsumotot Y, Tsunoda E, Ohto T, Suzuki Y et al. (2004). Potentiality of DNA-dependent protein kinase to phosphorylate Ser46 of human p53. Biochem Biophys Res Commun 323: 816–822.

    CAS  PubMed  Google Scholar 

  • Kondo S, Lu Y, Debbas M, Lin AW, Sarosi I, Itie A et al. (2003). Characterization of cells and gene-targeted mice deficient for the p53-binding kinase homeodomain-interacting protein kinase 1 (HIPK1). Proc Natl Acad Sci USA 100: 5431–5436.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krieghoff-Henning E, Hofmann TG . (2008). Role of nuclear bodies in apoptosis signalling. Biochem Biophys Acta 1783: 2185–2194.

    CAS  PubMed  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH . (1997). Regulation of p53 stability by Mdm2. Nature 387: 299–303.

    CAS  PubMed  Google Scholar 

  • Lanni C, Nardinocchi L, Puca R, Stanga S, Uberti D, Memo M et al. (2010). Homeodomain interacting protein kinase 2: a target for Alzheimer's beta amyloid leading to misfolded p53 and inappropriate cell survival. PLoS ONE 5: e10171.

    PubMed  PubMed Central  Google Scholar 

  • Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S et al. (2003). Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112: 779–791.

    CAS  PubMed  Google Scholar 

  • Li Q, Wang X, Wu R, Rui Y, Liu W, Wang J et al. (2007a). Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death. Cancer Res 67: 66–74.

    CAS  PubMed  Google Scholar 

  • Li XL, Arai Y, Harada H, Shima Y, Yoshida H, Rokudai S et al. (2007b). Mutations of the HIPK2 gene in acute myeloid leukemia and myelodysplastic sindrome impari AML1- and p53-mediated transcription. Oncogene 26: 7231–7239.

    CAS  PubMed  Google Scholar 

  • Li Q, Lin S, Wang X, Lian G, Lu Z, Guo H et al. (2009). Axin determines cell fate by controlling the p53 activation threshold after DNA damage. Nat Cell Biol 11: 1128–1134.

    CAS  PubMed  Google Scholar 

  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD et al. (1999). P53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19: 1202–1209.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Nikolaev AY, Imai S-I, Chen D, Su F, Shiloh A et al. (2001). Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107: 137–148.

    CAS  PubMed  Google Scholar 

  • MacLachlan TK, El-Deiry WS . (2002). Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc Natl Acad Sci USA 99: 9492–94-97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani F, Tocco F, Girardini J, Smith P, Gasco M, Lu X et al. (2007). The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosi inhibitor iASPP. Nat Struct Mol Biol 14: 912–920.

    CAS  PubMed  Google Scholar 

  • Marchetti A, Cecchinelli B, D'Angelo M, D'Orazi M, Crescenzi M, Sacchi A et al. (2004). P53 can inhibit cell proliferation through caspase-mediated cleavage of ERK2/MAPK. Cell Death Diff 11: 596–607.

    CAS  Google Scholar 

  • Martins CP, Brown-Swigart L, Evans GI . (2006). Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127: 1323–1334.

    CAS  PubMed  Google Scholar 

  • Mayo LD, Seo YR, Jackson MW, Smith ML, Rivera Guzman J, Korgaonkar CK et al. (2005). Phosphorylation of human p53 at serine 46 determines promoter selection and whether apoptosis is attenuated or amplified. J Biol Chem 280: 25953–25959.

    CAS  PubMed  Google Scholar 

  • Meplan C, Richard M-J, Hainaut P . (2000). Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene 19: 5227–5236.

    CAS  PubMed  Google Scholar 

  • Moehlenbrink J, Bitomsky N, Hofmann TG . (2010). Hypoxia suppresses chemotherapeutic drug-induced p53 Serine 46 phosphorylation by triggering HIPK2 degradation. Cancer Lett 292: 119–124.

    CAS  PubMed  Google Scholar 

  • Moller A, Sirma H, Hofmann TG, Rueffer S, Klimeczak E, Droge W et al. (2003a). PML is required for homeodomain-interacting protein kinase 2 (HIPK2)-mediated p53 phosphorylation and cell cycle arrest but is dispensable for the formation of HIPK domains. Cancer Res 63: 4310–4314.

    PubMed  Google Scholar 

  • Moller A, Sirma H, Hofmann TG, Staege H, Gresko E, Ludi HS et al. (2003b). Sp100 is important for the stimulatory effect of homeodomain-interacting protein kinase-2 on p53-dependent gene expression. Oncogene 22: 8731–8737.

    PubMed  Google Scholar 

  • Nardinocchi L, Puca R, Sacchi A, Rechavi G, Givol D, D'Orazi G . (2009). Targeting hypoxia in cancer cells by restoring homeodomain interacting protein kinase 2 and p53 activity and suppressing HIF-1alpha. PLoS ONE 4: e6819.

    PubMed  PubMed Central  Google Scholar 

  • Nardinocchi L, Puca R, Givol D, D'Orazi G . (2010). HIPK2: A therapeutical target to be (re)activated for tumor suppression. Role in p53 activation and HIF-1α inhibition. Cell Cycle 9: 1–6.

    Google Scholar 

  • Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T et al. (2000). P53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102: 849–862.

    CAS  PubMed  Google Scholar 

  • Okamura S, Arakawa H, Tanaka T, Nakanishi H, Ng CC, Taya Y et al. (2001). P53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis. Mol Cell 8: 85–94.

    CAS  PubMed  Google Scholar 

  • Peifer M, Polakis P . (2000). Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 287: 1606–1609.

    CAS  PubMed  Google Scholar 

  • Pierantoni GM, Bulfone A, Pentimalli F, Fedele M, Iuliano R, Santoro M et al. (2002). The homeodomain-interacting protein kinase 2 gene is expressed late in embryogenesis and preferentially in retina, muscle, and neural tissues. Biochem Biophys Res Commun 290: 942–947.

    CAS  PubMed  Google Scholar 

  • Pierantoni GM, Rinaldo C, Mottolese M, Di Benedetto A, Esposito F, Soddu S et al. (2007). High-mobility group A1 inhibits p53 by cytoplasmic relocalization of its proapoptotic activator HIPK2. J Clin Invest 117: 693–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pistritto G, Puca R, Nardinocchi L, Sacchi A, D'Orazi G . (2007). HIPK2-induced p53Ser46 phosphorylation activates the KILLER/DR5-mediated caspase-8 extrinsic apoptotic pathway. Cell Death Differ 14: 1837–1839.

    CAS  PubMed  Google Scholar 

  • Puca R, Nardinocchi L, Gal H, Rechavi G, Amariglio N, Domany E et al. (2008a). Reversible dysfunction of wild-type p53 following homeodomain-interacting protein kinase-2 knockdown. Cancer Res 68: 3707–3714.

    CAS  PubMed  Google Scholar 

  • Puca R, Nardinocchi L, Pistritto G, D'Orazi G . (2008b). Overexpression of HIPK2 circumvents the blockade of apoptosis in chemoresistant ovarian cancer cells. Gynecol Oncol 109: 403–410.

    CAS  PubMed  Google Scholar 

  • Puca R, Nardinocchi L, Sacchi A, Rechavi G, Givol D, D'Orazi G . (2009a). HIPK2 modulates p53 activity towards pro-apoptotic transcription. Mol Cancer 8: 85.

    PubMed  PubMed Central  Google Scholar 

  • Puca R, Nardinocchi L, Bossi G, Sacchi A, Rechavi G, Givol D et al. (2009b). Restoring wtp53 activity in HIPK2 depleted MCF7 cells by modulating metallothionein and zinc. Exp Cell Res 315: 67–75.

    CAS  PubMed  Google Scholar 

  • Puca R, Nardinocchi L, Storace G, Rechavi G, Sacchi A, Givol D et al. (2010). Nox1 is involved with p53 deacetylation and suppression of its transcriptional activity and apoptosis. Free Rad Biol Med 48: 1338–1346.

    CAS  PubMed  Google Scholar 

  • Rinaldo C, Prodosmo A, Siepi F, Soddu S . (2007a). HIPK2: a multitalented partner for transcription factors in DNA damage response and development. Biochem Cell Biol 85: 411–418.

    CAS  PubMed  Google Scholar 

  • Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F et al. (2007b). MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell 25: 739–750.

    CAS  PubMed  Google Scholar 

  • Rinaldo C, Prodosmo A, Siepi F, Moncada A, Sacchi A, Selivanova G et al. (2009). HIPK2 regulation by MDM2 determines tumor cell response to the p53-reactivating drugs Nutlin-3 and RITA. Cancer Res 69: 6241–6248.

    CAS  PubMed  Google Scholar 

  • Rui Y, Xu Z, Lin S, Li Q, Rui H, Luo W et al. (2004). Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. EMBO J 23: 4583–4594.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saito S, Goodarzi AA, Higashimoto Y, Noda Y, Lees-Miller SP, Appella E et al. (2002). ATM mediates phosphorylation at multiple p53 sites, including Ser46, in response to ionizing radiation. J Biol Chem 277: 12491–12494.

    CAS  PubMed  Google Scholar 

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A et al. (1998). DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes Dev 12: 2831–2841.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seidel S, Garvalov BK, Wirta V, von Stechow L, Schanzer A, Meletis K et al. (2010). A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2a. Brain 133: 983–995.

    PubMed  Google Scholar 

  • Shieh S-Y, Ikeda M, Taya Y, Prives C . (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 9: 325–334.

    Google Scholar 

  • Shmueli A, Oren M . (2007). Mdm2: p53's lifesaver? Mol Cell 25: 794–796.

    CAS  PubMed  Google Scholar 

  • Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K . (2007). DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell 25: 725–738.

    CAS  PubMed  Google Scholar 

  • Tang Y, Luo J, Zhang W, Gu W . (2006). Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24: 827–839.

    CAS  PubMed  Google Scholar 

  • Tomasini R, Samir AA, Carrier A, Isnardon D, Cecchinelli B, Soddu S et al. (2003). TP53INP1 and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity. J Biol Chem 278: 37722–37729.

    CAS  PubMed  Google Scholar 

  • Unger T, Nau MM, Segal S, Minna JD . (1992). p53: a transdominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO J 11: 1383–1390.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). In vivo activation of the p53 pathway by small-molecules antagonists of MDM2. Science 303: 844–848.

    CAS  PubMed  Google Scholar 

  • Vaziri H, Dessain SK, Eaton EN, Imai S-I, Frye RA, Pandita TK et al. (2001). hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 107: 149–159.

    CAS  PubMed  Google Scholar 

  • Vazquez A, Bond EE, Levine AJ, Bond L . (2008). The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Disc 7: 979–987.

    CAS  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. (2007). Restoration of p53 function leads to tumor regression in vivo. Nature 445: 661–665.

    CAS  PubMed  Google Scholar 

  • Verhaegh GW, Parat MO, Richard MJ, Hainaut P . (1998). Modulation of p53 conformation and DNA-binding activity by intracellular chelation of zinc. Mol Carcinog 21: 205–214.

    CAS  PubMed  Google Scholar 

  • Vousden KH, Liu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    CAS  PubMed  Google Scholar 

  • Wang Y, Bedatin K-M, Hug H . (2001). HIPK2 overexpression leads to stabilization of p53 protein and increased p53 transcriptional activity by decreasing Mdm2 protein levels. BMC Mol Biol 2: 8–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wee H-J, Chih-Cheng Voon D, Bae S-C, Ito Y . (2008). PEBP2-β/CBF-β-dependent phosphorylation of RUNX1 and p300 by HIPK2: implications for leukemogenesis. Blood 112: 3777–3787.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei G, Ku S, Ma GK, Saito S, Tang AA, Zhang J et al. (2007). HIPK2 represses β-catenin-mediated transcription, epidermal stem cell expansion, and skin tumorigenesis. Proc Natl Acad Sci USA 104: 13040–13045.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wesierska-Gadek J, Schmitz ML, Ranftler C . (2007). Roscovitine-activated HIP2 kinase induces phosphorylation of wt p53 at Ser-46 in human MCF-7 breast cancer cells. J Cell Biochem 100: 865–874.

    CAS  PubMed  Google Scholar 

  • Wiggins AK, Wei G, Doxakis E, Wong C, Tang AA, Zang K et al. (2004). Interaction of Brn3a and HIPK2 mediates transcriptional repression of sensory neuron survival. J Cell Biol 167: 257–267.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winter M, Sombroek D, Dauth I, Moehlenbrink J, Scheuermann K, Crone J et al. (2009). Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nat Cell Biol 10: 812–824.

    Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. (2007). Senescence and tumor clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445: 656–660.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Liu H, Miki Y . (2006). Protein kinase C δ regulates Ser46 phoshorylation of p53 tumor suppressor in the apoptotic response to DNA damage. J Biol Chem 281: 5734–5740.

    CAS  PubMed  Google Scholar 

  • Zacchi P, Gostissa M, Uchida T, Salvagno C, Avolio F, Volinia S et al. (2002). The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419: 853–857.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research conducted in our laboratory is supported by Grants from Italian Association for Cancer Research and from University ‘Gd’Annunzio’. RP is a recipient of a fellowship from Italian Foundation for Cancer Research (FIRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G D'Orazi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puca, R., Nardinocchi, L., Givol, D. et al. Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene 29, 4378–4387 (2010). https://doi.org/10.1038/onc.2010.183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.183

Keywords

This article is cited by

Search

Quick links