Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EGR1 reactivation by histone deacetylase inhibitors promotes synovial sarcoma cell death through the PTEN tumor suppressor

Abstract

Synovial sarcoma is a high-grade soft tissue malignancy, for which current cytotoxic chemotherapies provide limited benefit. Although histone deacetylase (HDAC) inhibitors are known to suppress synovial sarcoma in vitro and in vivo, the exact mechanism is not clear. In this study, we report a central role of the transcription factor, early growth response-1 (EGR1), in the regulation of HDAC inhibitor-induced apoptotic cell death in synovial sarcoma. The SS18-SSX oncoprotein, characteristic of synovial sarcoma, maintains EGR1 expression at low levels, whereas it is significantly increased after HDAC inhibitor treatment. On the contrary, EGR1 knockdown leads to a decrease in HDAC inhibitor-induced apoptosis. Moreover, we find that under these conditions phosphatase and tensin homolog deleted in chromosome 10 (PTEN) is upregulated and this occurs through direct binding of EGR1 to an element upstream of the PTEN promoter. Using a combination of gain- and loss-of-function approaches, we show that EGR1 modulation of PTEN contributes to HDAC inhibitor-induced apoptosis in synovial sarcoma. Finally, restoration of EGR1 or PTEN expression is sufficient to induce synovial sarcoma cell death. Taken together, our findings indicate that SS18-SSX-mediated attenuation of an EGR1–PTEN network regulates synovial sarcoma cell survival, and that HDAC inhibitor-mediated apoptosis operates at least in part through reactivation of this pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Archer SY, Meng S, Shei A, Hodin RA . (1998). p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA 95: 6791–6796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW . (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5: 769–784.

    Article  CAS  PubMed  Google Scholar 

  • Bozzi F, Ferrari A, Negri T, Conca E, Luca da R, Losa M et al. (2008). Molecular characterization of synovial sarcoma in children and adolescents: evidence of akt activation. Transl Oncol 1: 95–101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brett D, Whitehouse S, Antonson P, Shipley J, Cooper C, Goodwin G . (1997). The SYT protein involved in the t(X;18) synovial sarcoma translocation is a transcriptional activator localised in nuclear bodies. Hum Mol Genet 6: 1559–1564.

    Article  CAS  PubMed  Google Scholar 

  • Calogero A, Cuomo L, D′Onofrio M, de Grazia U, Spinsanti P, Mercola D et al. (1996). Expression of Egr-1 correlates with the transformed phenotype and the type of viral latency in EBV genome positive lymphoid cell lines. Oncogene 13: 2105–2112.

    CAS  PubMed  Google Scholar 

  • Calogero A, Lombari V, De Gregorio G, Porcellini A, Ucci S, Arcella A et al. (2004). Inhibition of cell growth by EGR-1 in human primary cultures from malignant glioma. Cancer Cell Int 4: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Condorelli F, Gnemmi I, Vallario A, Genazzani AA, Canonico PL . (2008). Inhibitors of histone deacetylase (HDAC) restore the p53 pathway in neuroblastoma cells. Br J Pharmacol 153: 657–668.

    Article  CAS  PubMed  Google Scholar 

  • de Bruijn DR, Allander SV, van Dijk AH, Willemse MP, Thijssen J, van Groningen JJ et al. (2006). The synovial-sarcoma-associated SS18-SSX2 fusion protein induces epigenetic gene (de)regulation. Cancer Res 66: 9474–9482.

    Article  CAS  PubMed  Google Scholar 

  • Downes CP, Bennett D, McConnachie G, Leslie NR, Pass I, MacPhee C et al. (2001). Antagonism of PI 3-kinase-dependent signalling pathways by the tumour suppressor protein, PTEN. Biochem Soc Trans 29: 846–851.

    Article  CAS  PubMed  Google Scholar 

  • Gan YH, Zhang S . (2009). PTEN/AKT pathway involved in histone deacetylases inhibitor induced cell growth inhibition and apoptosis of oral squamous cell carcinoma cells. Oral Oncol 45: e150–e154.

    Article  CAS  PubMed  Google Scholar 

  • Gashler A, Sukhatme VP . (1995). Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol 50: 191–224.

    Article  CAS  PubMed  Google Scholar 

  • Habold C, Poehlmann A, Bajbouj K, Hartig R, Korkmaz KS, Roessner A et al. (2008). Trichostatin A causes p53 to switch oxidative-damaged colorectal cancer cells from cell cycle arrest into apoptosis. J Cell Mol Med 12: 607–621.

    Article  CAS  PubMed  Google Scholar 

  • Huang RP, Darland T, Okamura D, Mercola D, Adamson ED . (1994). Suppression of v-sis-dependent transformation by the transcription factor, Egr-1. Oncogene 9: 1367–1377.

    CAS  PubMed  Google Scholar 

  • Huang RP, Fan Y, de Belle I, Niemeyer C, Gottardis MM, Mercola D et al. (1997). Decreased Egr-1 expression in human, mouse and rat mammary cells and tissues correlates with tumor formation. Int J Cancer 72: 102–109.

    Article  CAS  PubMed  Google Scholar 

  • Huang RP, Liu C, Fan Y, Mercola D, Adamson ED . (1995). Egr-1 negatively regulates human tumor cell growth via the DNA-binding domain. Cancer Res 55: 5054–5062.

    CAS  PubMed  Google Scholar 

  • Italiano A, Penel N, Robin YM, Bui B, Le Cesne A, Piperno-Neumann S et al. (2009). Neo/adjuvant chemotherapy does not improve outcome in resected primary synovial sarcoma: a study of the French Sarcoma Group. Ann Oncol 20: 425–430.

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Ouchida M, Morimoto Y, Yoshida A, Jitsumori Y, Ozaki T et al. (2005). Significant growth suppression of synovial sarcomas by the histone deacetylase inhibitor FK228 in vitro and in vivo. Cancer Lett 224: 311–319.

    Article  CAS  PubMed  Google Scholar 

  • Khan O, La Thangue NB . (2008). Drug Insight: histone deacetylase inhibitor-based therapies for cutaneous T-cell lymphomas. Nat Clin Pract Oncol 5: 714–726.

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee YH, Kwon TK, Chang JS, Chung KC, Min DS . (2006). Phospholipase D prevents etoposide-induced apoptosis by inhibiting the expression of early growth response-1 and phosphatase and tensin homologue deleted on chromosome 10. Cancer Res 66: 784–793.

    Article  CAS  PubMed  Google Scholar 

  • Krones-Herzig A, Mittal S, Yule K, Liang H, English C, Urcis R et al. (2005). Early growth response 1 acts as a tumor suppressor in vivo and in vitro via regulation of p53. Cancer Res 65: 5133–5143.

    Article  CAS  PubMed  Google Scholar 

  • Le Beau MM, Espinosa 3rd R, Neuman WL, Stock W, Roulston D, Larson RA et al. (1993). Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases. Proc Natl Acad Sci USA 90: 5484–5488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin WJ, Press MF, Gaynor RB, Sukhatme VP, Boone TC, Reissmann PT et al. (1995). Expression patterns of immediate early transcription factors in human non-small cell lung cancer. The Lung Cancer Study Group. Oncogene 11: 1261–1269.

    CAS  PubMed  Google Scholar 

  • Lim FL, Soulez M, Koczan D, Thiesen HJ, Knight JC . (1998). A KRAB-related domain and a novel transcription repression domain in proteins encoded by SSX genes that are disrupted in human sarcomas. Oncogene 17: 2013–2018.

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Adamson E, Mercola D . (1996). Transcription factor EGR-1 suppresses the growth and transformation of human HT-1080 fibrosarcoma cells by induction of transforming growth factor beta 1. Proc Natl Acad Sci USA 93: 11831–11836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Yao J, de Belle I, Huang RP, Adamson E, Mercola D . (1999). The transcription factor EGR-1 suppresses transformation of human fibrosarcoma HT1080 cells by coordinated induction of transforming growth factor-beta1, fibronectin, and plasminogen activator inhibitor-1. J Biol Chem 274: 4400–4411.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Grogan L, Nau MM, Allegra CJ, Chu E, Wright JJ . (2001). Physical interaction between p53 and primary response gene Egr-1. Int J Oncol 18: 863–870.

    CAS  PubMed  Google Scholar 

  • Lubieniecka JM, de Bruijn DR, Su L, van Dijk AH, Subramanian S, van de Rijn M et al. (2008). Histone deacetylase inhibitors reverse SS18-SSX-mediated polycomb silencing of the tumor suppressor early growth response 1 in synovial sarcoma. Cancer Res 68: 4303–4310.

    Article  CAS  PubMed  Google Scholar 

  • Ma DZ, Xu Z, Liang YL, Su JM, Li ZX, Zhang W et al. (2005). Down-regulation of PTEN expression due to loss of promoter activity in human hepatocellular carcinoma cell lines. World J Gastroenterol 11: 4472–4477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina V, Edmonds B, Young GP, James R, Appleton S, Zalewski PD . (1997). Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res 57: 3697–3707.

    CAS  PubMed  Google Scholar 

  • Moradei O, Vaisburg A, Martell RE . (2008). Histone deacetylase inhibitors in cancer therapy: new compounds and clinical update of benzamide-type agents. Curr Top Med Chem 8: 841–858.

    Article  CAS  PubMed  Google Scholar 

  • Nagai M, Tanaka S, Tsuda M, Endo S, Kato H, Sonobe H et al. (2001). Analysis of transforming activity of human synovial sarcoma-associated chimeric protein SYT-SSX1 bound to chromatin remodeling factor hBRM/hSNF2 alpha. Proc Natl Acad Sci USA 98: 3843–3848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair P, Muthukkumar S, Sells SF, Han SS, Sukhatme VP, Rangnekar VM . (1997). Early growth response-1-dependent apoptosis is mediated by p53. J Biol Chem 272: 20131–20138.

    Article  CAS  PubMed  Google Scholar 

  • Okcu MF, Munsell M, Treuner J, Mattke A, Pappo A, Cain A et al. (2003). Synovial sarcoma of childhood and adolescence: a multicenter, multivariate analysis of outcome. J Clin Oncol 21: 1602–1611.

    Article  PubMed  Google Scholar 

  • Pan L, Lu J, Wang X, Han L, Zhang Y, Han S et al. (2007). Histone deacetylase inhibitor trichostatin a potentiates doxorubicin-induced apoptosis by up-regulating PTEN expression. Cancer 109: 1676–1688.

    Article  CAS  PubMed  Google Scholar 

  • Roeb W, Boyer A, Cavenee WK, Arden KC . (2007). PAX3-FOXO1 controls expression of the p57Kip2 cell-cycle regulator through degradation of EGR1. Proc Natl Acad Sci USA 104: 18085–18090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roeb W, Boyer A, Cavenee WK, Arden KC . (2008). Guilt by association: PAX3-FOXO1 regulates gene expression through selective destabilization of the EGR1 transcription factor. Cell Cycle 7: 837–841.

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Tenniswood M . (2007). Site-specific acetylation of p53 directs selective transcription complex assembly. J Biol Chem 282: 4765–4771.

    Article  CAS  PubMed  Google Scholar 

  • Soulez M, Saurin AJ, Freemont PS, Knight JC . (1999). SSX and the synovial-sarcoma-specific chimaeric protein SYT-SSX co-localize with the human Polycomb group complex. Oncogene 18: 2739–2746.

    Article  CAS  PubMed  Google Scholar 

  • Stimson L, Wood V, Khan O, Fotheringham S, La Thangue NB . (2009). HDAC inhibitor-based therapies and haematological malignancy. Ann Oncol 20: 1293–1302.

    Article  CAS  PubMed  Google Scholar 

  • Sukhatme VP . (1990). Early transcriptional events in cell growth: the Egr family. J Am Soc Nephrol 1: 859–866.

    CAS  PubMed  Google Scholar 

  • Sukhatme VP, Kartha S, Toback FG, Taub R, Hoover RG, Tsai-Morris CH . (1987). A novel early growth response gene rapidly induced by fibroblast, epithelial cell and lymphocyte mitogens. Oncogene Res 1: 343–355.

    CAS  PubMed  Google Scholar 

  • Thaete C, Brett D, Monaghan P, Whitehouse S, Rennie G, Rayner E et al. (1999). Functional domains of the SYT and SYT-SSX synovial sarcoma translocation proteins and co-localization with the SNF protein BRM in the nucleus. Hum Mol Genet 8: 585–591.

    Article  CAS  PubMed  Google Scholar 

  • Virolle T, Adamson ED, Baron V, Birle D, Mercola D, Mustelin T et al. (2001). The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol 3: 1124–1128.

    Article  CAS  PubMed  Google Scholar 

  • Virolle T, Krones-Herzig A, Baron V, De Gregorio G, Adamson ED, Mercola D . (2003). Egr1 promotes growth and survival of prostate cancer cells. Identification of novel Egr1 target genes. J Biol Chem 278: 11802–11810.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Baron V, Mercola D, Mustelin T, Adamson ED . (2007). A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells. Cell Death Differ 14: 436–446.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, de Belle I, Liang H, Adamson ED . (2004). Coactivating factors p300 and CBP are transcriptionally crossregulated by Egr1 in prostate cells, leading to divergent responses. Mol Cell 15: 83–94.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang SS, Saito K, Williams S, Arimura Y, Ma Y et al. (2009). PTEN regulation by Akt-EGR1-ARF-PTEN axis. EMBO J 28: 21–33.

    Article  PubMed  Google Scholar 

  • Zhao Y, Lu S, Wu L, Chai G, Wang H, Chen Y et al. (2006). Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Mol Cell Biol 26: 2782–2790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Diederik RH de Bruijn (Radbound University Nijmegen Medical Centre, Nijmegen, the Netherlands) for the gift of rabbit polyclonal antibody against SS18–SSX. This work was supported by a grant from the Canadian Cancer Society Research Institute (Grant #018355). Dr TO Nielsen is a scholar of the Michael Smith Foundation for Health Research, and Dr TM Underhill is an Arthritis Society Investigator.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T O Nielsen or T M Underhill.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, L., Cheng, H., Sampaio, A. et al. EGR1 reactivation by histone deacetylase inhibitors promotes synovial sarcoma cell death through the PTEN tumor suppressor. Oncogene 29, 4352–4361 (2010). https://doi.org/10.1038/onc.2010.204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.204

Keywords

This article is cited by

Search

Quick links