Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DNA breakage and cell cycle checkpoint abrogation induced by a therapeutic thiopurine and UVA radiation

Abstract

The frequency of squamous cell skin carcinoma in organ transplant patients is around 100-fold higher than normal. This dramatic example of therapy-related cancer reflects exposure to sunlight and to immunosuppressive drugs. Here, we show that the interaction between low doses of UVA, the major ultraviolet component of incident sunlight, and 6-TG, a UVA chromophore that is introduced into DNA by one of the most widely prescribed immunosuppressive drugs, causes DNA single- and double-strand breaks (DSB). S phase cells are particularly vulnerable to this DNA breakage and cells defective in rejoining of S-phase DSB are hypersensitive to the combination of low-dose UVA and DNA 6-TG. 6-TG/UVA-induced DNA lesions provoke canonical DNA damage responses involving activation of the ATM/Chk2 and ATR/Chk1 pathways and appropriate cell cycle checkpoints. Higher levels of photochemical DNA damage induce a proteasome-mediated degradation of Chk1 and checkpoint abrogation that is consistent with persistent unrepaired DNA damage. These findings indicate that the interaction between UVA and an immunosuppressant drug causes photochemical DNA lesions, including DNA breaks, and can compromise cell cycle checkpoints. These two properties could contribute to the high risk of sunlight-related skin cancer in long-term immunosuppressed patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingstone AL, Williams GT et al (2002). Inherited variants of MYH associated with somatic G:C->T:A mutations in colorectal tumors. Nat Genet 30: 227–232.

    Article  CAS  Google Scholar 

  • Barnes DE, Lindahl T . (2004). Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Ann Rev Genet 38: 445–47642.

    Article  CAS  Google Scholar 

  • Bickers DR, Athar M . (2006). Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 126: 2565–2575.

    Article  CAS  Google Scholar 

  • Brem R, Li F, Karran P . (2008). Reactive oxygen species generated by thiopurine/UVA cause irreparable transcription-blocking DNA lesions. Nucleic Acids Res 37: 1951–1961.

    Article  Google Scholar 

  • Cadet J, Sage E, Douki T . (2005). Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571: 3–17.

    Article  CAS  Google Scholar 

  • Cahill MA, Nordheim A, Xu Y-Z . (1996). Crosslinking of SRF to the c-fos SRE CArG box guanines using photo-active thioguanine oligonucleotides. Biochem Biophys Res Commun 229: 170–175.

    Article  CAS  Google Scholar 

  • Caldecott KW . (2003). XRCC1 and DNA strand break repair. DNA Repair 2: 955–969.

    Article  CAS  Google Scholar 

  • Cartwright R, Tambini CE, Simpson PJ, Thacker J . (1998). The XRCC2 DNA repair gene from human and mouse encodes a novel member of the recA/Rad51 family. Nucleic Acids Res 26: 3084–3089.

    Article  CAS  Google Scholar 

  • Cooke MS, Duarte TL, Cooper D, Chen J, Nandagopal S, Evans MD . (2008). Combination of azathioprine and UVA irradiation is a major source of cellular 8-oxo-7,8-dihydro-2′-deoxyguanosine. DNA Repair 7: 1982–1989.

    Article  CAS  Google Scholar 

  • Daehn I, Karran P . (2008). Immune effector cells produce lethal DNA damage in cells treated with a thiopurine. Cancer Res 69: 2393–2399.

    Article  Google Scholar 

  • Davis MJ . (2004). Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci 3: 17–25.

    Article  Google Scholar 

  • Demple B, DeMott MS . (2002). Dynamics and diversions in base excision DNA repair of oxidized abasic lesions. Oncogene 21: 8926–8934.

    Article  CAS  Google Scholar 

  • Euvrard S, Kanitakis J, Claudy A . (2003). Skin cancers after organ transplantation. N Engl J Med 348: 1681–1691.

    Article  Google Scholar 

  • Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A . (2004). H2AX: the histone guardian of the genome. DNA Repair 3: 959–967.

    Article  CAS  Google Scholar 

  • Grosse Y, Baan R, Straif K, Secretan B, El Ghissassi F, Bouvard V et al. (2009). A review of human carcinogens—Part A: pharmaceuticals. Lancet Onco 10: 13–14.

    Article  Google Scholar 

  • Grulich AE, vanLeeuwen MT, Falster MO, Vajdic CM . (2007). Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370: 59–67.

    Article  Google Scholar 

  • Hoeijmakers JHJ . (2001). Genome maintenance mechanisms for preventing cancer. Nat Genet 411: 366–374.

    CAS  Google Scholar 

  • Karran P, Attard N . (2008). Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer 8: 24–36.

    Article  CAS  Google Scholar 

  • Kasai H, Nishimura S . (1984). Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res 12: 2137–2145.

    Article  CAS  Google Scholar 

  • Kerzendorfer C, O'Driscoll M . (2009). Human DNA damage response and repair deficiency syndromes: linking genomic instability and cell cycle checkpoint proficiency. DNA Repair 8: 1139–1152.

    Article  CAS  Google Scholar 

  • Koniaras K, Cuddihy AR, Christopoulos H, Hogg A, O'Connell MJ . (2001). Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells. Oncogene 20: 7453–7463.

    Article  CAS  Google Scholar 

  • Kumar SS, Ghosh A, Devasagayam TP, Chauhan PS . (2000). Effect of vanillin on methylene blue plus light-induced single-strand breaks in plasmid pBR322 DNA. Mutat Res 469: 207–214.

    Article  CAS  Google Scholar 

  • Lam MH, Liu Q, Elledge SJ, Rosen JM . (2004). Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 6: 45–59.

    Article  CAS  Google Scholar 

  • Lennard L, Thomas S, Harrington CJ, Maddocks JL . (1985). Skin cancer in renal transplant recipients is associated with increased concentrations of 6-thioguanine nucleotide in red blood cells. Br J Dermatol 113: 723–729.

    Article  CAS  Google Scholar 

  • Limoli CL, Ward JF . (1993). A new method for introducing double-strand breaks into cellular DNA. Radiat Res 134: 160–169.

    Article  CAS  Google Scholar 

  • Ljungman M, Hanawalt PC . (1992). Efficient protection against oxidative DNA damage in chromatin. Mol Carcinogenesis 5: 264–269.

    Article  CAS  Google Scholar 

  • Ljungman M, Nyberg S, Nygren J, Eriksson M, Ahnstrom G . (1991). DNA-bound proteins contribute much more than soluble intracellular compounds to the intrinsic protection against radiation-induced DNA strand breaks in human cells. Radiat Res 127: 171–176.

    Article  CAS  Google Scholar 

  • Montaner B, O'Donovan P, Reelfs O, Perrett CM, Zhang X, Xu Y-Z et al. (2007). Reactive oxygen-mediated damage to a human DNA replication and repair protein. EMBO Reports 8: 1074–1079.

    Article  CAS  Google Scholar 

  • O'Donovan P, Perrett C, Zhang X, Montaner B, Xu Y-Z, Harwood CA et al. (2005). Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science 309: 1871–1874.

    Article  CAS  Google Scholar 

  • Ormerod MG . (2000). Flow cytometry—A practical approach. (ed.). Oxford University Press: Oxford, UK, pp 159–177.

  • Penn I . (1994). The problem of cancer in transplant patients: an overview. Transplant Sci 4: 23–32.

    CAS  PubMed  Google Scholar 

  • Perrett CM, Walker SL, O'Donovan P, Warwick J, Harwood CA, Karran P et al. (2008). Azathioprine treatment sensitizes human skin to ultraviolet A radiation. Br J Dermatol 159: 198–204.

    Article  CAS  Google Scholar 

  • Shiloh Y . (2001). ATM (ataxia telangiectasia mutated): expanding roles in the DNA damage response and cellular homeostasis. Biochem Soc Trans 29: 661–666.

    Article  CAS  Google Scholar 

  • Smith CC, Archer GE, Forster EJ, Lambert TR, Rees RW, Lynch AM . (1999). Analysis of gene mutations and clastogenicity following short-term treatment with azathioprine in MutaMouse. Environ Mol Mutagen 34: 131–139.

    Article  CAS  Google Scholar 

  • Toyooka T, Ibuki Y, Takabayashi F, Goto R . (2006). Coexposure to benzo[a]pyrene and UVA induces DNA damage: first proof of double-strand breaks in a cell-free system. Environ Mol Mutagen 47: 38–47.

    Article  CAS  Google Scholar 

  • Warren DJ, Andersen A, Slordal L . (1995). Quantitation of 6-thioguanine residues in peripheral blood leukocyte DNA obtained from patients receiving 6-mercaptopurine-based maintenance therapy. Cancer Res 55: 1670–1674.

    CAS  PubMed  Google Scholar 

  • Yun MH, Hiom K . (2009). CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 459: 460–463.

    Article  CAS  Google Scholar 

  • Zhang X, Jeffs G, Ren X, O'Donovan P, Montaner B, Perrett CM et al. (2006). Novel DNA lesions generated by the interaction between therapeutic thiopurines and UVA light. DNA Repair 6: 344–354.

    Article  Google Scholar 

  • Zhang YW, Otterness DM, Chiang GG, Xie W, Liu YC, Mercurio FC et al. (2005). Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol Cell 19: 607–618.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Natalie Attard for some of the experiments with HaCaT cells and Drs John Thacker and Mark O’Driscoll for providing cell lines. The assistance of Cancer Research UK Central Cell Services is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Karran.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brem, R., Li, F., Montaner, B. et al. DNA breakage and cell cycle checkpoint abrogation induced by a therapeutic thiopurine and UVA radiation. Oncogene 29, 3953–3963 (2010). https://doi.org/10.1038/onc.2010.140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.140

Keywords

This article is cited by

Search

Quick links