Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A transcriptional cross-talk between RhoA and c-Myc inhibits the RhoA/Rock-dependent cytoskeleton

Abstract

The GTPase RhoA participates in a number of cellular processes, including cytoskeletal organization, mitogenesis and tumorigenesis. We have previously shown that the transforming activity of an oncogenic version of RhoA (Q63L mutant) was highly dependent on the transcriptional factor c-Myc. In contrast to these positive effects in the RhoA route, we show here that c-Myc affects negatively the F-actin cytoskeleton induced by RhoAQ63L and its downstream effector, the serine/threonine kinase Rock. This effect entails the activation of a transcriptional program that requires synergistic interactions with RhoA-derived signals and that includes the upregulation of the GTPase Cdc42 and its downstream element Pak1 as well as the repression of specific integrin subunits. The negative effects of c-Myc in the F-actin cytoskeleton are eliminated by the establishment of cell-to-cell contacts, an effect associated with the rescue of Pak1 and integrin levels at the post-transcriptional and transcriptional levels, respectively. These results reveal the presence of a hitherto unknown signaling feed-back loop between RhoA and c--Myc oncogenes that can contribute to maintain fluid cytoskeletal dynamics in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y et al. (1997). Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275: 1308–1311.

    Article  CAS  PubMed  Google Scholar 

  • Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T et al. (1996). Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271: 20246–20249.

    Article  CAS  PubMed  Google Scholar 

  • Berenjeno IM, Nunez F, Bustelo XR . (2007). Transcriptomal profiling of the cellular transformation induced by Rho subfamily GTPases. Oncogene 26: 4295–4305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos JL, Rehmann H, Wittinghofer A . (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell 129: 865–877.

    Article  CAS  PubMed  Google Scholar 

  • Bustelo XR, Sauzeau V, Berenjeno IM . (2007). GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 29: 356–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft DR, Sahai E, Mavria G, Li S, Tsai J, Lee WM et al. (2004). Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Res 64: 8994–9001.

    Article  CAS  PubMed  Google Scholar 

  • Dransart E, Olofsson B, Cherfils J . (2005). RhoGDIs revisited: novel roles in Rho regulation. Traffic 6: 957–966.

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A . (2002). Rho GTPases in cell biology. Nature 420: 629–635.

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Zheng Y . (2004). Rho family GTPases cooperate with p53 deletion to promote primary mouse embryonic fibroblast cell invasion. Oncogene 23: 5577–5585.

    Article  CAS  PubMed  Google Scholar 

  • Hatzoglou A, Ader I, Splingard A, Flanders J, Saade E, Leroy I et al. (2007). Gem associates with Ezrin and acts via the Rho-GAP protein Gmip to down-regulate the Rho pathway. Mol Biol Cell 18: 1242–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe AB, Hall A . (2005). Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21: 247–269.

    Article  CAS  PubMed  Google Scholar 

  • Joneson T, McDonough M, Bar-Sagi D, Van Aelst L . (1996). RAC regulation of actin polymerization and proliferation by a pathway distinct from Jun kinase. Science 274: 1374–1376.

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M et al. (1996). Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273: 245–248.

    Article  CAS  PubMed  Google Scholar 

  • Lee HH, Chang ZF . (2008). Regulation of RhoA-dependent ROCKII activation by Shp2. J Cell Biol 181: 999–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Helfman DM . (2004). Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway. J Biol Chem 279: 1885–1891.

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Bagrodia S, Cerione R, Manor D . (1997). A novel Cdc42Hs mutant induces cellular transformation. Curr Biol 7: 794–797.

    Article  CAS  PubMed  Google Scholar 

  • Mueller BK, Mack H, Teusch N . (2005). Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4: 387–398.

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Takaishi K, Kodama A, Mammoto A, Shiozaki H, Monden M et al. (1999). Distinct actions and cooperative roles of ROCK and mDia in Rho small G protein-induced reorganization of the actin cytoskeleton in Madin-Darby canine kidney cells. Mol Biol Cell 10: 2481–2491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olofsson B . (1999). Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal 11: 545–554.

    Article  CAS  PubMed  Google Scholar 

  • Ongusaha PP, Kim HG, Boswell SA, Ridley AJ, Der CJ, Dotto GP et al. (2006). RhoE is a pro-survival p53 target gene that inhibits ROCK I-mediated apoptosis in response to genotoxic stress. Curr Biol 16: 2466–2472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Lee JH, Ha M, Nam JW, Kim VN . (2009). miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 16: 23–29.

    Article  CAS  PubMed  Google Scholar 

  • Riento K, Guasch RM, Garg R, Jin B, Ridley AJ . (2003). RhoE binds to ROCK I and inhibits downstream signaling. Mol Cell Biol 23: 4219–4229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riento K, Ridley AJ . (2003). Rocks: multifunctional kinases in cell behaviour. Nat Rev Cell Biol 4: 446–456.

    Article  CAS  Google Scholar 

  • Sahai E, Garcia-Medina R, Pouyssegur J, Vial E . (2007). Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J Cell Biol 176: 35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahai E, Ishizaki T, Narumiya S, Treisman R . (1999). Transformation mediated by RhoA requires activity of ROCK kinases. Curr Biol 9: 136–145.

    Article  CAS  PubMed  Google Scholar 

  • Shiio Y, Donohoe S, Yi EC, Goodlett DR, Aebersold R, Eisenman RN . (2002). Quantitative proteomic analysis of Myc oncoprotein function. EMBO J 21: 5088–5096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HR, Ogunjimi AA, Zhang Y, Ozdamar B, Bose R, Wrana JL . (2006). Degradation of RhoA by Smurf1 ubiquitin ligase. Methods Enzymol 406: 437–447.

    Article  CAS  PubMed  Google Scholar 

  • Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH et al. (2003). Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302: 1775–1779.

    Article  CAS  PubMed  Google Scholar 

  • Ward Y, Yap SF, Ravichandran V, Matsumura F, Ito M, Spinelli B et al. (2002). The GTP binding proteins Gem and Rad are negative regulators of the Rho-Rho kinase pathway. J Cell Biol 157: 291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA . (2003). Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3: 219–231.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M Blázquez for technical help. XRB work is supported by grants from the NIH (5R01CA73735), the Spanish Ministry of Science and Innovation (SAF2006-01789, GEN2003-20239-C06-01), the Red Temática de Investigación Cooperativa en Cáncer (RD06/0020/0001), the Castilla y León Autonomous Government (GR97), and the 7th Framework European Union Program (FP7-HEALTH-2007-A-201862).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X R Bustelo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauzeau, V., Berenjeno, I., Citterio, C. et al. A transcriptional cross-talk between RhoA and c-Myc inhibits the RhoA/Rock-dependent cytoskeleton. Oncogene 29, 3781–3792 (2010). https://doi.org/10.1038/onc.2010.134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.134

Keywords

This article is cited by

Search

Quick links