Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human prion protein binds Argonaute and promotes accumulation of microRNA effector complexes

Abstract

Despite intense research in the context of neurodegenerative diseases associated with its misfolding, the endogenous human prion protein PrPC (or PRNP) has poorly understood physiological functions. Whereas most PrPC is exposed to the extracellular environment, conserved domains result in transmembrane forms of PrPC that traffic in the endolysosomal system and are linked to inherited and infectious neuropathologies. One transmembrane PrPC variant orients the N-terminal 'octarepeat' domain into the cytoplasm. Here we demonstrate that the octarepeat domain of human PrPC contains GW/WG motifs that bind Argonaute (AGO) proteins, the essential components of microRNA (miRNA)-induced silencing complexes (miRISCs). Transmembrane PrPC preferentially binds AGO, and PrPC promotes formation or stability of miRISC effector complexes containing the trinucleotide repeat-containing gene 6 proteins (TNRC6) and miRNA-repressed mRNA. Accordingly, effective repression of several miRNA targets requires PrPC. We propose that dynamic interactions between PrPC-enriched endosomes and subcellular foci of AGO underpin these effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ago preferentially interacts with transmembrane PrPC using GW/WG-motifs.
Figure 2: Mouse PrPC forms a complex with Ago2 in intact cells on MVB-like organelles.
Figure 3: PrPC associates with TNRC6 and DICER but does not affect pre-miRNA processing.
Figure 4: PrPC promotes assembly or stability of AGO complexes containing TNRC6 and miRNA-repressed mRNA.
Figure 5: PrPC promotes interaction of AGO with MVB.

Similar content being viewed by others

References

  1. Gregory, R.I., Chendrimada, T.P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640 (2005).

    Article  CAS  Google Scholar 

  2. MacRae, I.J., Ma, E., Zhou, M., Robinson, C.V. & Doudna, J.A. In vitro reconstitution of the human RISC-loading complex. Proc. Natl. Acad. Sci. USA 105, 512–517 (2008).

    Article  CAS  Google Scholar 

  3. Maniataki, E. & Mourelatos, Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 19, 2979–2990 (2005).

    Article  CAS  Google Scholar 

  4. El-Shami, M. et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev. 21, 2539–2544 (2007).

    Article  CAS  Google Scholar 

  5. Gould, G.W. & Lippincott-Schwartz, J. New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nat. Rev. Mol. Cell Biol. 10, 287–292 (2009).

    Article  CAS  Google Scholar 

  6. Cikaluk, D.E. et al. GERp95, a membrane-associated protein that belongs to a family of proteins involved in stem cell differentiation. Mol. Biol. Cell 10, 3357–3372 (1999).

    Article  CAS  Google Scholar 

  7. Gibbings, D.J., Ciaudo, C., Erhardt, M. & Voinnet, O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 11, 1143–1149 (2009).

    Article  CAS  Google Scholar 

  8. Lee, Y.S. et al. Silencing by small RNAs is linked to endosomal trafficking. Nat. Cell Biol. 11, 1150–1156 (2009).

    Article  CAS  Google Scholar 

  9. Tahbaz, N. et al. Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer. EMBO Rep. 5, 189–194 (2004).

    Article  CAS  Google Scholar 

  10. Falcón-Pérez, J.M., Nazarian, R., Sabatti, C. & Dell'Angelica, E.C. Distribution and dynamics of Lamp1-containing endocytic organelles in fibroblasts deficient in BLOC-3. J. Cell Sci. 118, 5243–5255 (2005).

    Article  Google Scholar 

  11. Weissmann, C. The state of the prion. Nat. Rev. Microbiol. 2, 861–871 (2004).

    Article  CAS  Google Scholar 

  12. Aguzzi, A., Baumann, F. & Bremer, J. The prion's elusive reason for being. Annu. Rev. Neurosci. 31, 439–477 (2008).

    Article  CAS  Google Scholar 

  13. Steele, A.D., Emsley, J.G., Ozdinler, P.H., Lindquist, S. & Macklis, J.D. Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc. Natl. Acad. Sci. USA 103, 3416–3421 (2006).

    Article  CAS  Google Scholar 

  14. Peralta, O.A., Huckle, W.R. & Eyestone, W.H. Expression and knockdown of cellular prion protein (PrPC) in differentiating mouse embryonic stem cells. Differentiation 81, 68–77 (2011).

    Article  CAS  Google Scholar 

  15. Stella, R., Massimino, M.L., Sandri, M., Sorgato, M.C. & Bertoli, A. Cellular prion protein promotes regeneration of adult muscle tissue. Mol. Cell. Biol. 30, 4864–4876 (2010).

    Article  CAS  Google Scholar 

  16. Emerman, A.B., Zhang, Z.R., Chakrabarti, O. & Hegde, R.S. Compartment-restricted biotinylation reveals novel features of prion protein metabolism in vivo. Mol. Biol. Cell 21, 4325–4337 (2010).

    Article  CAS  Google Scholar 

  17. Hegde, R.S., Voigt, S. & Lingappa, V.R. Regulation of protein topology by trans-acting factors at the endoplasmic reticulum. Mol. Cell 2, 85–91 (1998).

    Article  CAS  Google Scholar 

  18. Kim, S.J., Rahbar, R. & Hegde, R.S. Combinatorial control of prion protein biogenesis by the signal sequence and transmembrane domain. J. Biol. Chem. 276, 26132–26140 (2001).

    Article  CAS  Google Scholar 

  19. Hegde, R.S. et al. Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature 402, 822–826 (1999).

    Article  CAS  Google Scholar 

  20. Baillat, D. & Shiekhattar, R. Functional dissection of the human TNRC6 (GW182-related) family of proteins. Mol. Cell. Biol. 29, 4144–4155 (2009).

    Article  CAS  Google Scholar 

  21. Chendrimada, T.P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    Article  CAS  Google Scholar 

  22. Matranga, C., Tomari, Y., Shin, C., Bartel, D.P. & Zamore, P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).

    Article  CAS  Google Scholar 

  23. Kim, K., Lee, Y.S. & Carthew, R.W. Conversion of pre-RISC to holo-RISC by Ago2 during assembly of RNAi complexes. RNA 13, 22–29 (2007).

    Article  CAS  Google Scholar 

  24. Kumar, M.S. et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc. Natl. Acad. Sci. USA 105, 3903–3908 (2008).

    Article  CAS  Google Scholar 

  25. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 102, 13944–13949 (2005).

    Article  CAS  Google Scholar 

  26. Liu, Q. et al. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res. 36, 5391–5404 (2008).

    Article  CAS  Google Scholar 

  27. Johnson, C.D. et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 67, 7713–7722 (2007).

    Article  CAS  Google Scholar 

  28. Obad, S. et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet. 43, 371–378 (2011).

    Article  CAS  Google Scholar 

  29. Frankel, L.B. et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 283, 1026–1033 (2008).

    Article  CAS  Google Scholar 

  30. Kumar, M.S. et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc. Natl. Acad. Sci. USA 105, 3903–3908 (2008).

    Article  CAS  Google Scholar 

  31. Doench, J.G. & Sharp, P.A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).

    Article  CAS  Google Scholar 

  32. Sakurai, K. et al. A role for human Dicer in pre-RISC loading of siRNAs. Nucleic Acids Res. 39, 1510–1525 (2011).

    Article  CAS  Google Scholar 

  33. Noland, C.L., Ma, E. & Doudna, J.A. siRNA repositioning for guide strand selection by human Dicer complexes. Mol. Cell 43, 110–121 (2011).

    Article  CAS  Google Scholar 

  34. Haase, A.D. et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6, 961–967 (2005).

    Article  CAS  Google Scholar 

  35. Ye, X. et al. Structure of C3PO and mechanism of human RISC activation. Nat. Struct. Mol. Biol. 18, 650–657 (2011).

    Article  CAS  Google Scholar 

  36. Doench, J.G., Petersen, C.P. & Sharp, P.A. siRNAs can function as miRNAs. Genes Dev. 17, 438–442 (2003).

    Article  CAS  Google Scholar 

  37. Gibbings, D. & Voinnet, O. Control of RNA silencing and localization by endolysosomes. Trends Cell Biol. 20, 491–501 (2010).

    Article  CAS  Google Scholar 

  38. Satoh, J. et al. Protein microarray analysis identifies human cellular prion protein interactors. Neuropathol. Appl. Neurobiol. 35, 16–35 (2009).

    Article  CAS  Google Scholar 

  39. Spielhaupter, C. & Schatzl, H.M. PrPC directly interacts with proteins involved in signaling pathways. J. Biol. Chem. 276, 44604–44612 (2001).

    Article  CAS  Google Scholar 

  40. Duchaine, T.F. et al. Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell 124, 343–354 (2006).

    Article  CAS  Google Scholar 

  41. Miranda, A., Pericuesta, E., Ramirez, M.A. & Gutierrez-Adan, A. Prion protein expression regulates embryonic stem cell pluripotency and differentiation. PLoS ONE 6, e18422 (2011).

    Article  CAS  Google Scholar 

  42. Zhang, C.C., Steele, A.D., Lindquist, S. & Lodish, H.F. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc. Natl. Acad. Sci. USA 103, 2184–2189 (2006).

    Article  CAS  Google Scholar 

  43. Bremer, J. et al. Axonal prion protein is required for peripheral myelin maintenance. Nat. Neurosci. 13, 310–318 (2010).

    Article  CAS  Google Scholar 

  44. Müller, D.W. & Bosserhoff, A.K. Integrin β3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene 27, 6698–6706 (2008).

    Article  Google Scholar 

  45. Corley, S.M. & Gready, J.E. Identification of the RGG box motif in Shadoo: RNA-binding and signaling roles? Bioinform. Biol. Insights 2, 383–400 (2008).

    Article  Google Scholar 

  46. Young, R. et al. The prion or the related Shadoo protein is required for early mouse embryogenesis. FEBS Lett. 583, 3296–3300 (2009).

    Article  CAS  Google Scholar 

  47. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).

    Article  CAS  Google Scholar 

  48. Savas, J.N. et al. Huntington's disease protein contributes to RNA-mediated gene silencing through association with Argonaute and P bodies. Proc. Natl. Acad. Sci. USA 105, 10820–10825 (2008).

    Article  CAS  Google Scholar 

  49. Moore, R.C. et al. Huntington disease phenocopy is a familial prion disease. Am. J. Hum. Genet. 69, 1385–1388 (2001).

    Article  CAS  Google Scholar 

  50. Collins, S., McLean, C.A. & Masters, C.L. Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, and kuru: a review of these less common human transmissible spongiform encephalopathies. J. Clin. Neurosci. 8, 387–397 (2001).

    Article  CAS  Google Scholar 

  51. Till, S. et al. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat. Struct. Mol. Biol. 14, 897–903 (2007).

    Article  CAS  Google Scholar 

  52. Spiegelhalter, C. et al. From dynamic live cell imaging to 3D ultrastructure: novel integrated methods for high pressure freezing and correlative light-electron microscopy. PLoS ONE 5, e9014 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by La Ligue Contre le Cancer (D.G., fellowship), Agence Nationale de la Recherche ANR-08-MIE-010 EXOPRION (P.L.), the Prix Liliane Bettencourt pour les Sciences du Vivant (OV) and ANR-08-BLAN-0206-01 'Ago-hook' (O.V. and T.L.). Rabbit antibody XN-1 was a gift from A. Aguzzi (University of Zurich).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. did the electron microscopy experiments. D.P. and T.L. designed and carried out experiments defining the GW/WG-motif of PrPC. F.M. carried out the DICER assays. F.J. carried out some immunoprecipitations, western blots, FRET and all qRT-PCR. S.A. and P.L. generated cell lines stably expressing PrPC shRNA and prepared exosomes. D.G. designed experiments, wrote the manuscript and carried out immunoprecipitations, western blots, RNA extractions, confocal microscopy and analysis, density gradients, FRET, miRNA reporter assays and analysis of CtmPrPC. O.V. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Olivier Voinnet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Methods (PDF 1877 kb)

Supplementary Video 1

Apparent interactions between MVB and foci of GFP-TNRC6A. U251MG expressing GFP–TNRC6A and loaded with the MVB–marker lipid NRhPE (red). (MOV 6241 kb)

Supplementary Video 2

Apparent interactions between MVB and foci of GFP-AGO2. U251MG expressing GFP–AGO2 and loaded with MVB–marker lipid NRhPE (red). (MOV 8166 kb)

Supplementary Video 3

Apparent interactions between MVB and foci of GFP-AGO2. HeLa expressing GFP–AGO2 and loaded with MVB–marker lipid NRhPE (red). (MOV 13585 kb)

Supplementary Video 4

Apparent interactions between PrPC + organelles and foci of GFP-TNRC6A. HeLa co–expressing GFP–AGO2 and Orange–PrPC (red). (MOV 5649 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbings, D., Leblanc, P., Jay, F. et al. Human prion protein binds Argonaute and promotes accumulation of microRNA effector complexes. Nat Struct Mol Biol 19, 517–524 (2012). https://doi.org/10.1038/nsmb.2273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing