Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl

Abstract

Cbls are RING ubiquitin ligases that attenuate receptor tyrosine kinase (RTK) signal transduction. Cbl ubiquitination activity is stimulated by phosphorylation of a linker helix region (LHR) tyrosine residue. To elucidate the mechanism of activation, we determined the structures of human CBL, a CBL−substrate peptide complex and a phosphorylated-Tyr371-CBL−E2−substrate peptide complex, and we compared them with the known structure of a CBL−E2−substrate peptide complex. Structural and biochemical analyses show that CBL adopts an autoinhibited RING conformation, where the RING's E2-binding surface associates with CBL to reduce E2 affinity. Tyr371 phosphorylation activates CBL by inducing LHR conformational changes that eliminate autoinhibition, flip the RING domain and E2 into proximity of the substrate-binding site and transform the RING domain into an enhanced E2-binding module. This activation is required for RTK ubiquitination. Our results present a mechanism for regulation of c-Cbl's activity by autoinhibition and phosphorylation-induced activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ensemble of CBL structures.
Figure 2: CBL autoinhibition through the E2-binding site.
Figure 3: The RING domain adopts different conformations in solution.
Figure 4: pTyr371 alters LHR conformation and interactions.
Figure 5: EGFR ubiquitination by CBL.
Figure 6: Model for autoinhibition and phosphorylation-dependent activation of c-Cbl.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Pickart, C.M. & Eddins, M.J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Dye, B.T. & Schulman, B.A. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu. Rev. Biophys. Biomol. Struct. 36, 131–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Duda, D.M. et al. Structural regulation of cullin-RING ubiquitin ligase complexes. Curr. Opin. Struct. Biol. 21, 257–264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deshaies, R.J. & Joazeiro, C.A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Li, W. et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle′s dynamics and signaling. PLoS ONE 3, e1487 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Joazeiro, C.A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4, 1029–1040 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt, M.H. & Dikic, I. The Cbl interactome and its functions. Nat. Rev. Mol. Cell Biol. 6, 907–918 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Swaminathan, G. & Tsygankov, A.Y. The Cbl family proteins: ring leaders in regulation of cell signaling. J. Cell. Physiol. 209, 21–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Yoon, C.H., Lee, J., Jongeward, G.D. & Sternberg, P.W. Similarity of sli-1, a regulator of vulval development in C. elegans, to the mammalian proto-oncogene c–cbl. Science 269, 1102–1105 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Peschard, P. et al. Structural basis for ubiquitin-mediated dimerization and activation of the ubiquitin protein ligase Cbl-b. Mol. Cell 27, 474–485 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Kozlov, G. et al. Structural basis for UBA-mediated dimerization of c-Cbl ubiquitin ligase. J. Biol. Chem. 282, 27547–27555 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Lupher, M.L. Jr., Songyang, Z., Shoelson, S.E., Cantley, L.C. & Band, H. The Cbl phosphotyrosine-binding domain selects a D(N/D)XpY motif and binds to the Tyr292 negative regulatory phosphorylation site of ZAP-70. J. Biol. Chem. 272, 33140–33144 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Meng, W., Sawasdikosol, S., Burakoff, S.J. & Eck, M.J. Structure of the amino-terminal domain of Cbl complexed to its binding site on ZAP-70 kinase. Nature 398, 84–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Zheng, N., Wang, P., Jeffrey, P.D. & Pavletich, N.P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Andoniou, C.E., Thien, C.B. & Langdon, W.Y. Tumour induction by activated abl involves tyrosine phosphorylation of the product of the cbl oncogene. EMBO J. 13, 4515–4523 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blake, T.J., Shapiro, M., Morse, H.C. III & Langdon, W.Y. The sequences of the human and mouse c–cbl proto-oncogenes show v–cbl was generated by a large truncation encompassing a proline-rich domain and a leucine zipper-like motif. Oncogene 6, 653–657 (1991).

    CAS  PubMed  Google Scholar 

  19. Bisson, S.A., Ujack, E.E. & Robbins, S.M. Isolation and characterization of a novel, transforming allele of the c-Cbl proto-oncogene from a murine macrophage cell line. Oncogene 21, 3677–3687 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Thien, C.B., Walker, F. & Langdon, W.Y. RING finger mutations that abolish c-Cbl-directed polyubiquitination and downregulation of the EGF receptor are insufficient for cell transformation. Mol. Cell 7, 355–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Sanada, M. et al. Gain-of-function of mutated C–CBL tumour suppressor in myeloid neoplasms. Nature 460, 904–908 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Niemeyer, C.M. et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat. Genet. 42, 794–800 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grand, F.H. et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 113, 6182–6192 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Kales, S.C., Ryan, P.E., Nau, M.M. & Lipkowitz, S. Cbl and human myeloid neoplasms: the Cbl oncogene comes of age. Cancer Res. 70, 4789–4794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kassenbrock, C.K. & Anderson, S.M. Regulation of ubiquitin protein ligase activity in c-Cbl by phosphorylation-induced conformational change and constitutive activation by tyrosine to glutamate point mutations. J. Biol. Chem. 279, 28017–28027 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Ryan, P.E., Sivadasan-Nair, N., Nau, M.M., Nicholas, S. & Lipkowitz, S. The N terminus of Cbl-c regulates ubiquitin ligase activity by modulating affinity for the ubiquitin-conjugating enzyme. J. Biol. Chem. 285, 23687–23698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Y. et al. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol. Cell. Proteomics 4, 1240–1250 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, J., Kimura, A., Baumann, C.A. & Saltiel, A.R. APS facilitates c-Cbl tyrosine phosphorylation and GLUT4 translocation in response to insulin in 3T3–L1 adipocytes. Mol. Cell. Biol. 22, 3599–3609 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu, J. & Hubbard, S.R. Structural characterization of a novel Cbl phosphotyrosine recognition motif in the APS family of adapter proteins. J. Biol. Chem. 280, 18943–18949 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Ng, C. et al. Structural basis for a novel intrapeptidyl H-bond and reverse binding of c-Cbl-TKB domain substrates. EMBO J. 27, 804–816 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dominguez, C. et al. Structural model of the UbcH5B/CNOT4 complex revealed by combining NMR, mutagenesis, and docking approaches. Structure 12, 633–644 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Mace, P.D. et al. Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment. J. Biol. Chem. 283, 31633–31640 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Brzovic, P.S. et al. Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc. Natl. Acad. Sci. USA 100, 5646–5651 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buchwald, G. et al. Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b. EMBO J. 25, 2465–2474 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Visser Smit, G.D. et al. Cbl controls EGFR fate by regulating early endosome fusion. Sci. Signal. 2, ra86 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ryan, P.E., Davies, G.C., Nau, M.M. & Lipkowitz, S. Regulating the regulator: negative regulation of Cbl ubiquitin ligases. Trends Biochem. Sci. 31, 79–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Saha, A. & Deshaies, R.J. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell 32, 21–31 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Siepmann, T.J., Bohnsack, R.N., Tokgoz, Z., Baboshina, O.V. & Haas, A.L. Protein interactions within the N-end rule ubiquitin ligation pathway. J. Biol. Chem. 278, 9448–9457 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Song, J.J. et al. c-Cbl-mediated degradation of TRAIL receptors is responsible for the development of the early phase of TRAIL resistance. Cell. Signal. 22, 553–563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yokouchi, M. et al. Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J. Biol. Chem. 276, 35185–35193 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Pufall, M.A. & Graves, B.J. Autoinhibitory domains: modular effectors of cellular regulation. Annu. Rev. Cell Dev. Biol. 18, 421–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, M. et al. Chaperoned ubiquitylation–crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20, 525–538 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Du, F., Navarro-Garcia, F., Xia, Z., Tasaki, T. & Varshavsky, A. Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain. Proc. Natl. Acad. Sci. USA 99, 14110–14115 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lopez, J. et al. CARD-mediated autoinhibition of cIAP1′s E3 ligase activity suppresses cell proliferation and migration. Mol. Cell 42, 569–583 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Chaugule, V.K. et al. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30, 2853–2867 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamoah, K. et al. Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1′s C-terminal tail. Proc. Natl. Acad. Sci. USA 105, 12230–12235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Duda, D.M. et al. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134, 995–1006 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gallagher, E., Gao, M., Liu, Y.C. & Karin, M. Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. Proc. Natl. Acad. Sci. USA 103, 1717–1722 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wiesner, S. et al. Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell 130, 651–662 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Goldenberg, S.J. et al. Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 119, 517–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Kobashigawa, Y. et al. Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b. Proc. Natl. Acad. Sci. USA 108, 20579–20584 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank B. Schulman, F. Kozielski and A. Schuettelkopf for helpful discussions; V. Ulaganathan for computer support; S. Lilla and N. Morrice for mass spectroscopic analyses; W. Clark and A. Keith for in-house DNA sequencing; the Diamond Light Source (DLS) for access to beamlines I02, I03 and I04−1 (mx1229 and mx6683) that contributed to the results presented here; and the ID14−1 beamline at the European Synchrotron Radiation Facility (ESRF) for access and synchrotron support. This work was supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Contributions

H.D., L.B., G.J.S. and D.T.H. designed, conducted and analyzed in vitro experiments. A.H. designed, conducted and analyzed in vivo experiments. K.H.V. designed and analyzed in vivo experiments. L.B. and D.T.H. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Danny T Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–8 and Supplementary Methods (PDF 7587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dou, H., Buetow, L., Hock, A. et al. Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl. Nat Struct Mol Biol 19, 184–192 (2012). https://doi.org/10.1038/nsmb.2231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing