Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strain conformation, primary structure and the propagation of the yeast prion [PSI+]

Abstract

Prion proteins can adopt multiple infectious strain conformations. Here we investigate how the sequence of a prion protein affects its capacity to propagate specific conformations by exploiting our ability to create two distinct infectious conformations of the yeast [PSI+] prion protein Sup35, termed Sc4 and Sc37. PNM2, a G58D point mutant of Sup35 that was originally identified for its dominant interference with prion propagation, leads to rapid, recessive loss of Sc4 but does not interfere with propagation of Sc37. PNM2 destabilizes the amyloid core of Sc37 and causes compensatory effects that slow prion growth but aid prion division and result in robust propagation of Sc37. By contrast, PNM2 does not affect the structure or chaperone-mediated division of Sc4 but interferes with its delivery to daughter cells. Thus, effective delivery of infectious particles during cell division is a crucial and conformation-dependent step in prion inheritance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of in vivo prion phenotypes.
Figure 2: Schematic of the prion propagation cycle.
Figure 3: Characterization of the physical properties of fibers formed in vitro.
Figure 4: H/D exchange of wild-type (WT) and PNM2 SupNM fibers.
Figure 5: PNM2 fibers in the Sc4 conformation interact with the in vivo chaperone machinery.
Figure 6: PNM2 in the Sc4 conformation shows a defect in partitioning.

Similar content being viewed by others

References

  1. Caughey, B., Baron, G.S., Chesebro, B. & Jeffrey, M. Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions. Annu. Rev. Biochem. 78, 177–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chiti, F. & Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Tuite, M.F. & Cox, B.S. Propagation of yeast prions. Nat. Rev. Mol. Cell Biol. 4, 878–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Tessier, P.M. & Lindquist, S. Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]. Nat. Struct. Mol. Biol. 16, 598–605 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chien, P., Weissman, J.S. & DePace, A.H. Emerging principles of conformation-based prion inheritance. Annu. Rev. Biochem. 73, 617–656 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Santoso, A., Chien, P., Osherovich, L.Z . & Weissman, J.S . Molecular basis of a yeast prion species barrier. Cell 100, 277–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Morales, R., Abid, K. & Soto, C. The prion strain phenomenon: molecular basis and unprecedented features. Biochim. Biophys. Acta 1772, 681–691 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J.S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Derkatch, I.L., Chernoff, Y.O., Kushnirov, V.V., Inge-Vechtomov, S.G. & Liebman, S.W. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bradley, M.E., Edskes, H.K., Hong, J.Y., Wickner, R.B. & Liebman, S.W. Interactions among prions and prion “strains” in yeast. Proc. Natl. Acad. Sci. USA 99 Suppl 4, 16392–16399 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. King, C.-Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Chien, P. & Weissman, J. Conformational diversity in a yeast prion dictates its seeding specificity. Nature 410, 223–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Sparrer, H.E., Santoso, A., Szoka, F.C. & Weissman, J.S. Evidence for the prion hypothesis: induction of the yeast [PSI+] factor by in vitro-converted Sup35 protein. Science 289, 595–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Krishnan, R. & Lindquist, S.L. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435, 765–772 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Toyama, B.H., Kelly, M.J., Gross, J.D. & Weissman, J.S. The structural basis of yeast prion strain variants. Nature 449, 233–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka, M., Collins, S.R., Toyama, B.H. & Weissman, J.S. The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Derkatch, I.L., Bradley, M.E., Zhou, P. & Liebman, S.W. The PNM2 mutation in the prion protein domain of SUP35 has distinct effects on different variants of the [PSI+] prion in yeast. Curr. Genet. 35, 59–67 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Green, K.M. et al. The elk PRNP codon 132 polymorphism controls cervid and scrapie prion propagation. J. Gen. Virol. 89, 598–608 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Takemura, K., Kahdre, M., Joseph, D., Yousef, A. & Sreevatsan, S. An overview of transmissible spongiform encephalopathies. Anim. Health Res. Rev. 5, 103–124 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Zeidler, M., Stewart, G., Cousens, S.N., Estibeiro, K. & Will, R.G. Codon 129 genotype and new variant CJD. Lancet 350, 668 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Mead, S. et al. Creutzfeldt-Jakob disease, prion protein gene codon 129VV, and a novel PrPSc type in a young British woman. Arch. Neurol. 64, 1780–1784 (2007).

    Article  PubMed  Google Scholar 

  22. Collinge, J., Sidle, K.C., Meads, J., Ironside, J. & Hill, A.F. Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature 383, 685–690 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Hill, A.F. et al. The same prion strain causes vCJD and BSE. Nature 389, 448–450 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Doel, S.M., McCready, S.J., Nierras, C.R. & Cox, B.S. The dominant PNM2- mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137, 659–670 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Young, C.S.H. & Cox, B.S. Extrachromosomal elements in a super-suppression system of yeast: I. A nuclear gene controlling the inheritance of the extrachromosomal elements. Heredity 26, 413–422 (1971).

    Article  Google Scholar 

  26. Chernoff, Y., Lindquist, S., Ono, B., Inge-Vechtomov, S. & Liebman, S. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268, 880–884 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Kochneva-Pervukhova, N.V. et al. Mechanism of inhibition of Psi+ prion determinant propagation by a mutation of the N-terminus of the yeast Sup35 protein. EMBO J. 17, 5805–5810 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Glover, J.R. et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. King, C.Y. et al. Prion-inducing domain 2–114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc. Natl. Acad. Sci. USA 94, 6618–6622 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Higurashi, T., Hines, J.K., Sahi, C., Aron, R. & Craig, E.A. Specificity of the J-protein Sis1 in the propagation of 3 yeast prions. Proc. Natl. Acad. Sci. USA 105, 16596–16601 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jones, G.W. & Tuite, M.F. Chaperoning prions: the cellular machinery for propagating an infectious protein? Bioessays 27, 823–832 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Shorter, J. & Lindquist, S. Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. EMBO J. 27, 2712–2724 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tipton, K.A., Verges, K.J. & Weissman, J.S. In vivo monitoring of the prion replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. Mol. Cell 32, 584–591 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tessarz, P., Mogk, A. & Bukau, B. Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation. Mol. Microbiol. 68, 87–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Hung, G.-C. & Masison, D.C. N-terminal domain of yeast Hsp104 chaperone is dispensable for thermotolerance and prion propagation but necessary for curing prions by Hsp104 overexpression. Genetics 173, 611–620 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Di Salvo, S., Derdowski, A., Pezza, J.A. & Serio, T.R. Dominant prion mutants induce curing through pathways that promote chaperone-mediated disaggregation. Nat. Struct. Mol. Biol. advance online publication, doi:10.1038/nsmb.2031 (20 March 2011).

  37. Kryndushkin, D.S., Alexandrov, I.M., Ter-Avanesyan, M.D. & Kushnirov, V.V. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem. 278, 49636–49643 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Cox, B., Ness, F. & Tuite, M. Analysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast. Genetics 165, 23–33 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferreira, P.C., Ness, F., Edwards, S.R., Cox, B.S. & Tuite, M.F. The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol. Microbiol. 40, 1357–1369 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Grimminger, V., Richter, K., Imhof, A., Buchner, J. & Walter, S. The prion curing agent guanidinium chloride specifically inhibits ATP hydrolysis by Hsp104. J. Biol. Chem. 279, 7378–7383 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Jung, G. & Masison, D.C. Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr. Microbiol. 43, 7–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Byrne, L.J. et al. The number and transmission of [PSI] prion seeds (Propagons) in the yeast Saccharomyces cerevisiae. PLoS ONE 4, e4670 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu, B. et al. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140, 257–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Kaganovich, D., Kopito, R. & Frydman, J. Misfolded proteins partition between two distinct quality control compartments. Nature 454, 1088–1095 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robertson, A.S. et al. The WASP homologue Las17 activates the novel actin-regulatory activity of Ysc84 to promote endocytosis in yeast. Mol. Biol. Cell 20, 1618–1628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tonikian, R. et al. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins. PLoS Biol. 7, e1000218 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Madania, A. et al. The Saccharomyces cerevisiae homologue of human Wiskott-Aldrich syndrome protein Las17p interacts with the Arp2/3 complex. Mol. Biol. Cell 10, 3521–3538 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ganusova, E.E. et al. Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast. Mol. Cell. Biol. 26, 617–629 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bailleul, P., Newnam, G., Steenbergen, J. & Chernoff, Y. Genetic study of interactions between the cytoskeletal assembly protein Sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae. Genetics 153, 81 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin, C.H., Macgurn, J.A., Chu, T., Stefan, C.J. & Emr, S.D. Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135, 714–725 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Nikko, E. & Pelham, H.R.B. Arrestin-mediated endocytosis of yeast plasma membrane transporters. Traffic 10, 1856–1867 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Derdowski, A., Sindi, S.S., Klaips, C.L., Disalvo, S. & Serio, T.R. A size threshold limits prion transmission and establishes phenotypic diversity. Science 330, 680–683 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tanaka, M., Chien, P., Yonekura, K. & Weissman, J.S. Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121, 49–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Halfmann, R. & Lindquist, S. Screening for amyloid aggregation by semi-denaturing detergent-agarose gel electrophoresis. J. Vis. Exp. 16, 838 (2008).

    Google Scholar 

  55. Bagriantsev, S.N., Kushnirov, V.V. & Liebman, S.W. Analysis of amyloid aggregates using agarose gel electrophoresis. Methods Enzymol. 412, 33–48 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Bukau, A. Mogk and P. Tessarz for reagents; M. Kelly for NMR assistance; D. Cameron, S. Collins, C. Gross, D. Mullins, G. Narlikar, M. Tanaka and K. Tipton for discussions; and O. Brandman, C. Foo, A. Frost, N. Ingolia, E. Oh, E. Quan and E. Rodriguez for critical reading of the manuscript. This work was funded by the Howard Hughes Medical Institute (J.S.W.), the National Science Foundation Graduate Research Fellowship program (K.J.V.), the Hertz Foundation Peter Strauss Fellowship (M.H.S.) and the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

K.J.V., M.H.S. and J.S.W. designed this study and wrote the manuscript. J.S.W. supervised this work. K.J.V. and M.H.S. conducted the majority of the experiments. B.H.T. designed the H/X NMR experiments and acquired and analyzed the NMR data.

Corresponding author

Correspondence to Jonathan S Weissman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 2707 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verges, K., Smith, M., Toyama, B. et al. Strain conformation, primary structure and the propagation of the yeast prion [PSI+]. Nat Struct Mol Biol 18, 493–499 (2011). https://doi.org/10.1038/nsmb.2030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing