Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Short disordered protein segment regulates cross-species transmission of a yeast prion

Abstract

Soluble prion proteins contingently encounter foreign prion aggregates, leading to cross-species prion transmission. However, how its efficiency is regulated by structural fluctuation of the host soluble prion protein remains unsolved. In the present study, through the use of two distantly related yeast prion Sup35 proteins, we found that a specific conformation of a short disordered segment governs interspecies prion transmissibility. Using a multidisciplinary approach including high-resolution NMR and molecular dynamics simulation, we identified critical residues within this segment that allow interspecies prion transmission in vitro and in vivo, by locally altering dynamics and conformation of soluble prion proteins. Remarkably, subtle conformational differences caused by a methylene group between asparagine and glutamine sufficed to change the short segment structure and substantially modulate the cross-seeding activity. Thus, our findings uncover how conformational dynamics of the short segment in the host prion protein impacts cross-species prion transmission. More broadly, our study provides mechanistic insights into cross-seeding between heterologous proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A short disordered segment in SC- and KL-Sup35NM monomers exhibits species-specific difference in dynamics and regulates a species-specific seeding activity.
Fig. 2: Substitutions within a short disordered segment in SC-Sup35NM monomer markedly alter its cross-reactivity toward KL-Sup35NM seeds both in vitro and in vivo.
Fig. 3: Altered side-chain contacts within a short disordered segment through substitutions modulate the main-chain conformation of the segment and the cross-reactivity.
Fig. 4: The local main-chain conformation within a short disordered segment can be markedly different through subtle side-chain differences.
Fig. 5: The role of local conformational dynamics in regulating species-specific seeding activity.

Similar content being viewed by others

Data availability

The chemical shifts of KL-Sup35NM, 5MT-A, 5MT-B and 4MT-A have been deposited in the Biological Magnetic Resonance Bank under accession nos. 50131, 50132, 50133 and 50134, respectively. Other data and materials are available from the corresponding author upon reasonable request.

References

  1. Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Collinge, J. & Clarke, A. R. A general model of prion strains and their pathogenicity. Science 318, 930–936 (2007).

    CAS  PubMed  Google Scholar 

  3. Aguzzi, A., Heikenwalder, M. & Polymenidou, M. Insights into prion strains and neurotoxicity. Nat. Rev. Mol. Cell Biol. 8, 552–561 (2007).

    CAS  PubMed  Google Scholar 

  4. Tuite, M. F. & Serio, T. R. The prion hypothesis: from biological anomaly to basic regulatory mechanism. Nat. Rev. Mol. Cell Biol. 11, 823–833 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wickner, R. B. et al. Yeast prions: structure, biology, and prion-handling systems. Microbiol. Mol. Biol. Rev. 79, 1–17 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Liebman, S. W. & Chernoff, Y. O. Prions in yeast. Genetics 191, 1041–1072 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell 100, 277–288 (2000).

    CAS  PubMed  Google Scholar 

  8. Chen, B., Newnam, G. P. & Chernoff, Y. O. Prion species barrier between the closely related yeast proteins is detected despite coaggregation. Proc. Natl Acad. Sci. USA 104, 2791–2796 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, B. et al. Genetic and epigenetic control of the efficiency and fidelity of cross-species prion transmission. Mol. Microbiol. 76, 1483–1499 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tanaka, M., Chien, P., Yonekura, K. & Weissman, J. S. Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121, 49–62 (2005).

    CAS  PubMed  Google Scholar 

  11. Ohhashi, Y. et al. Molecular basis for diversification of yeast prion strain conformation. Proc. Natl Acad. Sci. USA 115, 2389–2394 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Soto, C. & Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332–1340 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Glover, J. R. et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819 (1997).

    CAS  PubMed  Google Scholar 

  14. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004).

    CAS  PubMed  Google Scholar 

  15. Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268, 880–884 (1995).

    CAS  PubMed  Google Scholar 

  16. Kay, L. E., Torchia, D. A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    CAS  PubMed  Google Scholar 

  17. Toyama, B. H., Kelly, M. J. S., Gross, J. D. & Weissman, J. S. The structural basis of yeast prion strain variants. Nature 449, 233–237 (2007).

    CAS  PubMed  Google Scholar 

  18. Ross, E. D. & Toombs, J. A. The effects of amino acid composition on yeast prion formation and prion domain interactions. Prion 4, 60–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Alexandrov, I. M., Vishnevskaya, A. B., Ter-Avanesyan, M. D. & Kushnirov, V. V. Appearance and propagation of polyglutamine-based amyloids in yeast. J. Biol. Chem. 283, 15185–15192 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. DePace, A. H. & Weissman, J. S. Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. Nat. Struct. Biol. 9, 389–396 (2002).

    CAS  PubMed  Google Scholar 

  21. Osherovich, L. Z. & Weissman, J. S. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion. Cell 106, 183–194 (2001).

    CAS  PubMed  Google Scholar 

  22. Kryndushkin, D. S., Alexandrov, I. M., Ter-Avanesyan, M. D. & Kushnirov, V. V. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem. 278, 49636–49643 (2003).

    CAS  PubMed  Google Scholar 

  23. Sugita, Y., Kitao, A. & Okamoto, Y. Multidimensional replica-exchange method for free-energy calculations. J. Chem. Phys. 113, 6042–6051 (2000).

    CAS  Google Scholar 

  24. Jung, J. et al. GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations. Comput. Mol. Sci. 5, 310–323 (2015).

    CAS  Google Scholar 

  25. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    CAS  PubMed  Google Scholar 

  26. Yoda, T., Sugita, Y. & Okamoto, Y. Hydrophobic core formation and dehydration in protein folding studied by generalized-ensemble simulations. Biophys. J. 99, 1637–1644 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. McGaughey, G. B., Gagne, M. & Rappe, A. K. π-Stacking interactions. J. Biol. Chem. 273, 15458–15463 (1998).

    CAS  PubMed  Google Scholar 

  28. England, J. L. & Haran, G. Role of solvation effects in protein denaturation: from thermodynamics to single molecules and back. Annu. Rev. Phys. Chem. 62, 257–277 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hwang, T.-L., van Zijl, P. C. M. & Mori, S. Accurate quantitation of water–amide proton exchange rates using the Phase-Modulated CLEAN chemical EXchange (CLEANEX-PM) approach with a Fast-HSQC (FHSQC) detection scheme. J. Biomol. NMR 11, 221–226 (1998).

    CAS  PubMed  Google Scholar 

  30. Cox, B., Ness, F. & Tuite, M. Analysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast. Genetics 165, 23–33 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mirbaha, H. et al. Inert and seed-competent tau monomers suggest structural origins of aggregation. eLife 7, e36584 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Tanaka, M. & Komi, Y. Layers of structure and function in protein aggregation. Nat. Chem. Biol. 11, 373–377 (2015).

    CAS  PubMed  Google Scholar 

  33. Meric, G., Robinson, A. S. & Roberts, C. J. Driving forces for nonnative protein aggregation and approaches to predict aggregation-prone regions. Annu. Rev. Chem. Biomol. Eng. 8, 139–159 (2017).

    CAS  PubMed  Google Scholar 

  34. Goldschmidt, L., Teng, P. K., Riek, R. & Eisenberg, D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl Acad. Sci. USA 107, 3487–3492 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Emily, M., Talvas, A. & Delamarche, C. MetAmyl: a METa-predictor for AMYLoid proteins. PLoS ONE 8, e79722 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. Gasior, P. & Kotulska, M. FISH Amyloid—a new method for finding amyloidogenic segments in proteins based on site specific co-occurence of aminoacids. BMC Bioinform. 15, 54 (2014).

    Google Scholar 

  37. Maurer-Stroh, S. et al. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat. Methods 7, 237–242 (2010).

    CAS  PubMed  Google Scholar 

  38. Ahmed, A. B., Znassi, N., Château, M.-T. & Kajava, A. V. A structure-based approach to predict predisposition to amyloidosis. Alzheimers Dement. 11, 681–690 (2015).

    PubMed  Google Scholar 

  39. Stapley, B. J. & Creamer, T. P. A survey of left-handed polyproline II helices. Protein Sci. 8, 587–595 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wadsworth, J. D. F. et al. Human prion protein with valine 129 prevents expression of variant CJD phenotype. Science 306, 1793–1796 (2004).

    CAS  PubMed  Google Scholar 

  41. Riek, R. et al. NMR structure of the mouse prion protein domain PrP(121–231). Nature 382, 180–182 (1996).

    CAS  PubMed  Google Scholar 

  42. Sigurdson, C. J. et al. A molecular switch controls interspecies prion disease transmission in mice. J. Clin. Invest. 120, 2590–2599 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Billeter, M. et al. Prion protein NMR structure and species barrier for prion diseases. Proc. Natl Acad. Sci. USA 94, 7281–7285 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gossert, A. D., Bonjour, S., Lysek, D. A., Fiorito, F. & Wuthrich, K. Prion protein NMR structures of elk and of mouse elk hybrids. Proc. Natl Acad. Sci. USA 102, 646–650 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Christen, B., Hornemann, S., Damberger, F. F. & Wuthrich, K. Prion protein NMR structure from Tammar Wallaby (Macropus eugenii) shows that the β2–α2 loop is modulated by long-range sequence effects. J. Mol. Biol. 389, 833–845 (2009).

    CAS  PubMed  Google Scholar 

  46. Lee, S. et al. Conformational diversity in prion protein variants influences intermolecular beta-sheet formation. EMBO J. 29, 251–262 (2010).

    CAS  PubMed  Google Scholar 

  47. Biljan, I. et al. Toward the molecular basis of inherited prion diseases: NMR structure of the human prion protein with V210I mutation. J. Mol. Biol. 412, 660–673 (2011).

    CAS  PubMed  Google Scholar 

  48. Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A. & Radford, S. E. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol. 19, 755–773 (2018).

    CAS  PubMed  Google Scholar 

  49. Vasconcelos, B. et al. Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagationof Tau-pathology in vivo. Acta Neuropathol. 131, 549–569 (2018).

    Google Scholar 

  50. Guo, J. L. et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117 (2013).

    CAS  PubMed  Google Scholar 

  51. Ohhashi, Y., Ito, K., Toyama, B. H., Weissman, J. S. & Tanaka, M. Differences in prion strain conformations result from non-native interactions in a nucleus. Nat. Chem. Biol. 6, 225–230 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Helsen, C. W. & Glover, J. R. Insight into molecular basis of curing of [PSI+] prion by overexpression of 104-kDa heat shock protein (Hsp104). J. Biol. Chem. 287, 542–556 (2012).

    CAS  PubMed  Google Scholar 

  53. Fukunishi, H., Watanabe, O. & Takada, S. On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: application to protein structure prediction. J. Chem. Phys. 116, 9058–9067 (2002).

    CAS  Google Scholar 

  54. Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kobayashi, C. et al. GENESIS 1.1: a hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms. J. Comput. Chem. 38, 2193–2206 (2017).

    CAS  PubMed  Google Scholar 

  56. Essmann, U., Perera, L. & Berkowitz, M. L. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    CAS  Google Scholar 

  57. Kumar, S., Bouzida, D., Swendsen, R. H., Kollman, P. A. & Rosenberg, J. M. The weighted histogram analysis method for free-energy calculations on biomolecules. J. Comput. Chem. 13, 1011–1021 (1992).

    CAS  Google Scholar 

  58. Borchsenius, A. S., Wegrzyn, R. D., Newnam, G. P., Inge-Vechtomov, S. G. & Chernoff, Y. O. Yeast prion protein derivative defective in aggregate shearing and production of new ‘seeds’. EMBO J. 20, 6683–6691 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lancaster, A. K., Bardill, J. P., True, H. L. & Masel, J. The spontaneous appearance rate of the yeast prion [PSI+] and its implications for the evolution of the evolvability properties of the [PSI+] system. Genetics 184, 393–400 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tuite, M. F., Mundy, C. R. & Cox, B. S. Agents that cause a high frequency of genetic change from [psi+] to [psi–] in Saccharomyces cerevisiae. Genetics 98, 691–711 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Takahashi for reagent preparation, H. Chih-Hao Shen for advice on NMR analysis, H. Kurahashi for advice on yeast experiments and the members of Tanaka laboratory for discussion. DNA-sequencing and MS were performed by the RIKEN Center for Brain Science Research Resources Division. Funding was provided by the Grants-in-Aid for Scientific Research (B) (no. 15H04345; to M.T.) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, the Grants-in-Aid for the Research Committee of Prion Disease and Slow Virus Infection (to Y.O., K.K. and M.T.) from the Ministry of Health, Labour and Welfare, Japan. M.T. received funding from the following: the RIKEN Pioneering Project (Cellular Evolution), the RIKEN Aging Project, Takeda Science Foundation, Nakatani Foundation, the Kato Memorial Trust for Nambyo Research and the Mochida Foundation. T.S. was a recipient of the Junior Research Associate fellowship from RIKEN.

Author information

Authors and Affiliations

Authors

Contributions

T.S. and M.T. designed the experiments. T.S. performed all the experiments. T.S. and M.T. analyzed and discussed the data. T.S. and Y.K. performed NMR data collection. T.S., Y.K., Y.Y., Y.O., K.K. and M.T. analyzed and discussed the data. T.Y. carried out MD simulations. T.Y., T.S., M.F., Y.S. and M.T. analyzed and discussed the data. T.S. and M.T. wrote the manuscript with input from all the authors.

Corresponding author

Correspondence to Motomasa Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1–14.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shida, T., Kamatari, Y.O., Yoda, T. et al. Short disordered protein segment regulates cross-species transmission of a yeast prion. Nat Chem Biol 16, 756–765 (2020). https://doi.org/10.1038/s41589-020-0516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-0516-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing