Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanistic insights into the activation of oncogenic forms of EGF receptor

Abstract

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly activated by mutation in non–small cell lung cancer. The mechanism of this oncogenic activation is not completely understood, but in contrast to that of the wild-type EGFR, it is proposed to be independent of kinase domain dimerization. Mechanistic studies on EGFR have mainly relied on cell-based assays or isolated kinase domain measurements. Here we show, using purified, near full-length human EGFR proteins (tEGFRs), that two oncogenic mutants are fully active independently of EGF and highly resistant to the therapeutic and endogenous inhibitors cetuximab, lapatinib and MIG6. Based on the pattern of inhibition and the effects of additional asymmetric kinase dimer interface mutations, we propose that these oncogenic EGFR mutants drive and strongly depend on the formation of the asymmetric kinase dimer for activation, which has implications for drug design and cancer treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation and inhibition mechanism for WT EGFR and the expression and purification strategy for mutant tEGFRs.
Figure 2: MIG6 seg 1+2 interacts with WT- and mutant tEGFRs.
Figure 3: Role of the asymmetric dimer interface for oncogenic EGFR activation.

Similar content being viewed by others

References

  1. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  Google Scholar 

  2. Hynes, N.E. & Lane, H.A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer 5, 341–354 (2005).

    Article  CAS  Google Scholar 

  3. Wheeler, D.L., Dunn, E.F. & Harari, P.M. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat. Rev. Clin. Oncol. 7, 493–507 (2010).

    Article  CAS  Google Scholar 

  4. Stamos, J., Sliwkowski, M.X. & Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272 (2002).

    Article  CAS  Google Scholar 

  5. Lynch, T.J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  Google Scholar 

  6. Paez, J.G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  Google Scholar 

  7. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA 101, 13306–13311 (2004).

    Article  CAS  Google Scholar 

  8. Wood, E.R. et al. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 64, 6652–6659 (2004).

    Article  CAS  Google Scholar 

  9. Cameron, D.A. & Stein, S. Drug Insight: intracellular inhibitors of HER2–clinical development of lapatinib in breast cancer. Nat. Clin. Pract. Oncol. 5, 512–520 (2008).

    Article  CAS  Google Scholar 

  10. Li, S. et al. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7, 301–311 (2005).

    Article  CAS  Google Scholar 

  11. Mano, M. & Humblet, Y. Drug Insight: panitumumab, a human EGFR-targeted monoclonal antibody with promising clinical activity in colorectal cancer. Nat. Clin. Pract. Oncol. 5, 415–425 (2008).

    Article  CAS  Google Scholar 

  12. Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669–672 (2002).

    Article  CAS  Google Scholar 

  13. Jura, N. et al. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137, 1293–1307 (2009).

    Article  Google Scholar 

  14. Garrett, T.P. et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 110, 763–773 (2002).

    Article  CAS  Google Scholar 

  15. Ogiso, H. et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110, 775–787 (2002).

    Article  CAS  Google Scholar 

  16. Ferguson, K.M. et al. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell 11, 507–517 (2003).

    Article  CAS  Google Scholar 

  17. Adak, S., DeAndrade, D. & Pike, L.J. The tethering arm of the EGF receptor is required for negative cooperativity and signal transduction. J. Biol. Chem. 286, 1545–1555 (2011).

    Article  CAS  Google Scholar 

  18. Macdonald, J.L. & Pike, L.J. Heterogeneity in EGF-binding affinities arises from negative cooperativity in an aggregating system. Proc. Natl. Acad. Sci. USA 105, 112–117 (2008).

    Article  CAS  Google Scholar 

  19. Zhang, X., Gureasko, J., Shen, K., Cole, P.A. & Kuriyan, J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125, 1137–1149 (2006).

    Article  CAS  Google Scholar 

  20. Zhang, X. et al. Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature 450, 741–744 (2007).

    Article  CAS  Google Scholar 

  21. Yun, C.H. et al. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11, 217–227 (2007).

    Article  CAS  Google Scholar 

  22. Carey, K.D. et al. Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib. Cancer Res. 66, 8163–8171 (2006).

    Article  CAS  Google Scholar 

  23. Guha, U. et al. Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proc. Natl. Acad. Sci. USA 105, 14112–14117 (2008).

    Article  CAS  Google Scholar 

  24. Gilmer, T.M. et al. Impact of common epidermal growth factor receptor and HER2 variants on receptor activity and inhibition by lapatinib. Cancer Res. 68, 571–579 (2008).

    Article  CAS  Google Scholar 

  25. Mulloy, R. et al. Epidermal growth factor receptor mutants from human lung cancers exhibit enhanced catalytic activity and increased sensitivity to gefitinib. Cancer Res. 67, 2325–2330 (2007).

    Article  CAS  Google Scholar 

  26. Okabe, T. et al. Differential constitutive activation of the epidermal growth factor receptor in non-small cell lung cancer cells bearing EGFR gene mutation and amplification. Cancer Res. 67, 2046–2053 (2007).

    Article  CAS  Google Scholar 

  27. Qiu, C. et al. In vitro enzymatic characterization of near full length EGFR in activated and inhibited states. Biochemistry 48, 6624–6632 (2009).

    Article  CAS  Google Scholar 

  28. Reeves, P.J., Callewaert, N., Contreras, R. & Khorana, H.G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl. Acad. Sci. USA 99, 13419–13424 (2002).

    Article  CAS  Google Scholar 

  29. Sato, J.D. et al. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol. Biol. Med. 1, 511–529 (1983).

    CAS  PubMed  Google Scholar 

  30. Wang, D., Huang, X.Y. & Cole, P.A. Molecular determinants for Csk-catalyzed tyrosine phosphorylation of the Src tail. Biochemistry 40, 2004–2010 (2001).

    Article  CAS  Google Scholar 

  31. Seeliger, M.A. et al. High yield bacterial expression of active c-Abl and c-Src tyrosine kinases. Protein Sci. 14, 3135–3139 (2005).

    Article  CAS  Google Scholar 

  32. Levinson, N.M. et al. A Src-like inactive conformation in the abl tyrosine kinase domain. PLoS Biol. 4, e144 (2006).

    Article  Google Scholar 

  33. Red Brewer, M. et al. The juxtamembrane region of the EGF receptor functions as an activation domain. Mol. Cell 34, 641–651 (2009).

    Article  Google Scholar 

  34. Macdonald-Obermann, J.L. & Pike, L.J. The intracellular juxtamembrane domain of the epidermal growth factor (EGF) receptor is responsible for the allosteric regulation of EGF binding. J. Biol. Chem. 284, 13570–13576 (2009).

    Article  CAS  Google Scholar 

  35. Thiel, K.W. & Carpenter, G. Epidermal growth factor receptor juxtamembrane region regulates allosteric tyrosine kinase activation. Proc. Natl. Acad. Sci. USA 104, 19238–19243 (2007).

    Article  CAS  Google Scholar 

  36. Qiao, Y., Molina, H., Pandey, A., Zhang, J. & Cole, P.A. Chemical rescue of a mutant enzyme in living cells. Science 311, 1293–1297 (2006).

    Article  CAS  Google Scholar 

  37. Bose, R. et al. Phosphoproteomic analysis of Her2/neu signaling and inhibition. Proc. Natl. Acad. Sci. USA 103, 9773–9778 (2006).

    Article  CAS  Google Scholar 

  38. Zhu, J. et al. Protein array identification of substrates of the Epstein-Barr virus protein kinase BGLF4. J. Virol. 83, 5219–5231 (2009).

    Article  CAS  Google Scholar 

  39. Segel, I.H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Wiley, New York, 1993).

  40. Azam, M., Seeliger, M.A., Gray, N.S., Kuriyan, J. & Daley, G.Q. Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat. Struct. Mol. Biol. 15, 1109–1118 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the US National Institutes of Health (GM099321 to D.J.L. and CA074305 to P.A.C.) for financial support and A. Mildvan and J. Stivers for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Z.W., D.J.L. and P.A.C. conceived of the project and designed the research. Z.W., M.K.T., P.A.L., K.K. and S.H. conducted experiments. All authors helped analyze the results and wrote the paper.

Corresponding authors

Correspondence to Daniel J Leahy or Philip A Cole.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 749 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Longo, P., Tarrant, M. et al. Mechanistic insights into the activation of oncogenic forms of EGF receptor. Nat Struct Mol Biol 18, 1388–1393 (2011). https://doi.org/10.1038/nsmb.2168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing