Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis

This article has been updated

Abstract

Adenosine deaminases acting on RNA (ADARs) catalyze hyperediting of long double-stranded RNAs (dsRNAs), whereby up to 50% of adenosines are converted to inosine (I). Although hyperedited dsRNAs (IU-dsRNAs) have been implicated in various cellular functions, we now provide evidence for another role. We show that IU-dsRNA suppresses the induction of interferon-stimulated genes (ISGs) and apoptosis by poly(IC). Moreover, we show that IU-dsRNA inhibits the activation of interferon regulatory factor 3 (IRF3), which is essential for the induction of ISGs and apoptosis. Finally, we speculate that the inhibition of IRF3 results from specific binding of IU-dsRNA to MDA-5 or RIG-I, both of which are cytosolic sensors for poly(IC). Although our data are consistent with a previous study in which ADAR1 deletion resulted in increased expression of ISGs and apoptosis, we show that IU-dsRNA per se suppresses ISGs and apoptosis. We therefore propose that any IU-dsRNA generated by ADAR1 can inhibit both pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IU-dsRNA suppressed induction of ISGs.
Figure 2: IU-dsRNA suppressed induction of ISGs by poly(IC).
Figure 3: Genes involved in immunity and defense were enriched.
Figure 4: Microarray validation by RT-qPCR.
Figure 5: Poly(IC)-induced apoptosis is inhibited by C-IU dsRNA.
Figure 6: C-IU dsRNA inhibits IRF3 activation.
Figure 7: IU-dsRNA binds specifically to MDA-5 and RIG-I.

Similar content being viewed by others

Change history

  • 24 August 2010

    In the version of this article initially published online, there was a formatting error in the sequences shown in Table 1. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Bass, B.L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846 (2002).

    Article  CAS  Google Scholar 

  2. Valente, L., Nishikura, K. & Kivie, M. ADAR gene family and A-to-I RNA editing: diverse roles in posttranscriptional gene regulation. Prog. Nucleic Acid Res. Mol. Biol. 79, 299–338 (2005).

    Article  CAS  Google Scholar 

  3. Serra, M.J., Smolter, P.E. & Westhof, E. Pronounced instability of tandem IU base pairs in RNA. Nucleic Acids Res. 32, 1824–1828 (2004).

    Article  CAS  Google Scholar 

  4. Blow, M., Futreal, P.A., Wooster, R. & Stratton, M.R. A survey of RNA editing in human brain. Genome Res. 14, 2379–2387 (2004).

    Article  CAS  Google Scholar 

  5. Morse, D.P., Aruscavage, P.J. & Bass, B.L. RNA hairpins in noncoding regions of human brain and Caenorhabditis elegans mRNA are edited by adenosine deaminases that act on RNA. Proc. Natl. Acad. Sci. USA 99, 7906–7911 (2002).

    Article  CAS  Google Scholar 

  6. Levanon, E.Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat. Biotechnol. 22, 1001–1005 (2004).

    Article  CAS  Google Scholar 

  7. Barak, M. et al. Evidence for large diversity in the human transcriptome created by Alu RNA editing. Nucleic Acids Res. 37, 6905–6915 (2009).

    Article  CAS  Google Scholar 

  8. Chen, L.-L., DeCerbo, J.N. & Carmichael, G.G. Alu element-mediated gene silencing. EMBO J. 27, 1694–1705 (2008).

    Article  CAS  Google Scholar 

  9. Chen, L.-L. & Carmichael, G.G. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol. Cell 35, 467–478 (2009).

    Article  CAS  Google Scholar 

  10. Hundley, H.A., Krauchuk, A.A. & Bass, B.L. C. elegans and H. sapiens mRNAs with edited 3′UTRs are present on polysomes. RNA 14, 2050–2060 (2008).

    Article  CAS  Google Scholar 

  11. Scadden, A.D.J. & Smith, C.W.J. Specific cleavage of hyper-edited dsRNAs. EMBO J. 20, 4243–4252 (2001).

    Article  CAS  Google Scholar 

  12. Scadden, A.D.J. The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat. Struct. Mol. Biol. 12, 489–496 (2005).

    Article  CAS  Google Scholar 

  13. Scadden, A.D.J. Inosine-containing dsRNA binds a stress-granule-like complex and downregulates gene expression in trans. Mol. Cell 28, 491–500 (2007).

    Article  CAS  Google Scholar 

  14. George, C.X. & Samuel, C.E. Characterization of the 5′-flanking region of the human RNA-specific adenosine deaminase ADAR1 gene and identification of an interferon-inducible ADAR1 promoter. Gene 229, 203–213 (1999).

    Article  CAS  Google Scholar 

  15. Eckmann, C.R., Neunteufl, A., Pfaffstetter, L. & Jantsch, M.F. The human but not the Xenopus RNA-editing enzyme ADAR1 has an atypical nuclear localization signal and displays the characteristics of a shuttling protein. Mol. Biol. Cell 12, 1911–1924 (2001).

    Article  CAS  Google Scholar 

  16. Wang, Q. et al. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J. Biol. Chem. 279, 4952–4961 (2004).

    Article  CAS  Google Scholar 

  17. Hartner, J.C., Walkley, C.R., Lu, J. & Orkin, S.H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 10, 109–115 (2009).

    Article  CAS  Google Scholar 

  18. Hiscott, J. Triggering the innate antiviral response through IRF-3 activation. J. Biol. Chem. 282, 15325–15329 (2007).

    Article  CAS  Google Scholar 

  19. Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205, 1601–1610 (2008).

    Article  CAS  Google Scholar 

  20. Anderson, P. & Kedersha, N. RNA granules. J. Cell Biol. 172, 803–808 (2006).

    Article  CAS  Google Scholar 

  21. Stark, G.R., Kerr, I.M., Williams, B.R.G., Silverman, R.H. & Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).

    Article  CAS  Google Scholar 

  22. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans . Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  23. Grudzien, E. et al. Novel cap analogs for in vitro synthesis of mRNAs with high translational efficiency. RNA 10, 1479–1487 (2004).

    Article  CAS  Google Scholar 

  24. Field, A.K. et al. Poly I:C, an inducer of interferon and interference against virus infections. Medicine 51, 169–174 (1972).

    Article  CAS  Google Scholar 

  25. Thomas, P.D. et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13, 2129–2141 (2003).

    Article  CAS  Google Scholar 

  26. Dogusan, Z. et al. Double-stranded RNA induces pancreatic β-cell apoptosis by activation of the toll-like receptor 3 and interferon regulatory factor 3 pathways. Diabetes 57, 1236–1245 (2008).

    Article  CAS  Google Scholar 

  27. Besch, R. et al. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J. Clin. Invest. 119, 2399–2411 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gorczyca, W., Gong, J., Ardelt, B., Traganos, F. & Darzynkiewicz, Z. The cell cycle related differences in susceptibility of HL-60 cells to apoptosis induced by various antitumor agents. Cancer Res. 53, 3186–3192 (1993).

    CAS  PubMed  Google Scholar 

  29. Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G. & Earnshaw, W.C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346–347 (1994).

    Article  CAS  Google Scholar 

  30. Lin, R., Heylbroeck, C., Pitha, P.M. & Hiscott, J. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol. Cell. Biol. 18, 2986–2996 (1998).

    Article  CAS  Google Scholar 

  31. Yoneyama, M. et al. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 17, 1087–1095 (1998).

    Article  CAS  Google Scholar 

  32. Weaver, B.K., Ando, O., Kumar, K.P. & Reich, N.C. Apoptosis is promoted by the dsRNA-activated factor (DRAF1) during viral infection independent of the action of interferon or p53. FASEB J. 15, 501–515 (2001).

    Article  CAS  Google Scholar 

  33. Peters, K., Chattopadhyay, S. & Sen, G.C. IRF-3 activation by sendai virus infection is required for cellular apoptosis and avoidance of persistence. J. Virol. 82, 3500–3508 (2008).

    Article  CAS  Google Scholar 

  34. Holm, G.H. et al. Retinoic acid-inducible gene-I and interferon-β promoter stimulator-1 augment proapoptotic responses following mammalian reovirus infection via interferon regulatory factor-3. J. Biol. Chem. 282, 21953–21961 (2007).

    Article  CAS  Google Scholar 

  35. Heylbroeck, C. et al. The IRF-3 transcription factor mediates sendai virus-induced apoptosis. J. Virol. 74, 3781–3792 (2000).

    Article  CAS  Google Scholar 

  36. Saito, T. et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc. Natl. Acad. Sci. USA 104, 582–587 (2007).

    Article  CAS  Google Scholar 

  37. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    Article  CAS  Google Scholar 

  38. Takahasi, K. et al. Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains. J. Biol. Chem. 284, 17465–17474 (2009).

    Article  CAS  Google Scholar 

  39. Kirshner, J.R., Karpova, A.Y., Kops, M. & Howley, P.M. Identification of TRAIL as an interferon regulatory factor 3 transcriptional target. J. Virol. 79, 9320–9324 (2005).

    Article  CAS  Google Scholar 

  40. Leaman, D.W. et al. Identification of X-linked inhibitor of apoptosis-associated factor-1 as an interferon-stimulated gene that augments TRAIL Apo2L-induced apoptosis. J. Biol. Chem. 277, 28504–28511 (2002).

    Article  CAS  Google Scholar 

  41. Toth, A.M., Li, Z., Cattaneo, R. & Samuel, C.E. RNA-specific adenosine deaminase ADAR1 suppresses measles virus-induced apoptosis and activation of protein kinase PKR. J. Biol. Chem. 284, 29350–29356 (2009).

    Article  CAS  Google Scholar 

  42. XuFeng, R. et al. ADAR1 is required for hematopoietic progenitor cell survival via RNA editing. Proc. Natl. Acad. Sci. USA 106, 17763–17768 (2009).

    Article  Google Scholar 

  43. Blow, M.J. et al. RNA editing of human microRNAs. Genome Biol. 7, R27 (2006).

    Article  Google Scholar 

  44. Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6, 981–988 (2005).

    Article  CAS  Google Scholar 

  45. Wormington, M., Searfoss, A.M. & Hurney, C.A. Overexpression of poly(A) binding protein prevents maturation-specific deadenylation and translational inactivation in Xenopus oocytes. EMBO J. 15, 900–909 (1996).

    Article  CAS  Google Scholar 

  46. Du, P., Kibbe, W.A. & Lin, S.M. lumi: a pipeline for processing Illumina microarray. Bioinformatics 24, 1547–1548 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Smith for helpful comments, J. Hiscott (McGill Univ.), J. De Miranda (Columbia Univ.) and S. Akira (Osaka Univ.) for reagents, R. Walker (Wellcome Trust Centre for Stem Cell Research) for FACS and E. Clemente and J. Bauer (Cambridge Genomic Services) for microarrays. This work was supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Contributions

A.D.J.S. designed the study; P.V. and A.D.J.S. performed the experiments and data analysis; A.D.J.S. prepared the manuscript.

Corresponding author

Correspondence to A D J Scadden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–4, Supplementary Methods (PDF 3546 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitali, P., Scadden, A. Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nat Struct Mol Biol 17, 1043–1050 (2010). https://doi.org/10.1038/nsmb.1864

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1864

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing