Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Urological aspects of the metabolic syndrome

Abstract

The metabolic syndrome is common in countries with Western lifestyles. It comprises a number of disorders—including insulin resistance, hypertension and obesity—that all act as risk factors for cardiovascular diseases. Urological diseases have also been linked to the metabolic syndrome. Most established aspects of the metabolic syndrome are linked to benign prostatic hyperplasia (BPH) and prostate cancer. Fasting plasma insulin, in particular, has been linked to BPH and incident, aggressive and lethal prostate cancer. The metabolic syndrome has also been shown to be associated with nonprostatic urological conditions such as male hypogonadism, nephrolithiasis, overactive bladder and erectile dysfunction, although data on these conditions are still sparse. Overall, the results of studies on urological aspects of the metabolic syndrome seem to indicate that BPH and prostate cancer could be regarded as two new aspects of the metabolic syndrome, and that an increased insulin level is a common underlying aberration that promotes both BPH and clinical prostate cancer. Urologists need to be aware of the effect that the metabolic syndrome has on urological disorders and should transfer this knowledge to their patients.

Key Points

  • The metabolic syndrome is a cluster of disorders, including type 2 diabetes, atherosclerotic disease manifestations, hypertension, obesity and dyslipidemia, and is prevalent in countries with Western lifestyles

  • The most important common underlying endocrine aberration of these disorders is an increased insulin level, which is also linked to benign prostatic hyperplasia (BPH) and prostate cancer

  • Most aspects of the metabolic syndrome are risk factors for BPH and prostate cancer, which seems to suggest that these tumors are themselves aspects of the metabolic syndrome

  • The metabolic syndrome is also linked to other urological conditions, such as hypogonadism, nephrolithiasis, overactive bladder and erectile dysfunction, which could suggest that these conditions are also aspects of the disorder

  • Patients should be informed about these findings, while clinicians await a definitive answer of how we can reduce the incidence and control the aggressiveness of urological aspects of metabolic syndrome

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The hypothetical mechanism of prostate tumor promotion by the metabolic syndrome involves lifestyle factors, including an inappropriate diet and low physical activity, which generate insulin resistance and a secondary increased insulin level.
Figure 2: Fasting plasma insulin levels in prostate cancer.
Figure 3: As our knowledge improves, we are beginning to find that the known aspects of the metabolic syndrome—type 2 diabetes, obesity, hypertension, and others—are only the tip of the iceberg.

Similar content being viewed by others

References

  1. Himsworth, H. Diabetes mellitus: a differentiation into insulin-sensitive and insulin-insensitive types. Lancet 6, 127–130 (1936).

    Article  Google Scholar 

  2. Reavan, G. M. Banting lecture. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988).

    Article  Google Scholar 

  3. DeFronzo, R. A. & Ferrannini, E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14, 173–194 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Haffner, S. M. et al. Prospective analysis of the insulin-resistance syndrome (Syndrome X). Diabetes 41, 715–789 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Reaven, G. M. Syndrome X: 6 years later. J. Int. Med. 236 (Suppl. 736), 13–22 (1994).

    Google Scholar 

  6. Golden, S. H., Robinson, K. A., Saldanha, I., Anton, B. & Ladenson, P. W. Prevalence and incidence of endocrine and metabolic disorders in the United States: a comprehensive study. J. Clin. Endocrinol. Metab. 94, 1853–1878 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kahn, R., Buse, J., Ferannini, E. & Stern, M. The metabolic syndrome: time for critical appraisal. Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 48, 1684–1699 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Grundmark, B. et al. The metabolic syndrome and the risk of prostate cancer under competing risks of death from other causes. Cancer Epidemiol. Biomarkers Prev. 19, 2088–2096 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hammarsten, J., Högstedt, B., Holthuis, N. & Mellström, D. Components of the metabolic syndrome—risk factors for the development of benign prostatic hyperplasia. Prostate Cancer Prostate Dis. 1, 157–162 (1998).

    Article  CAS  Google Scholar 

  10. Hammarsten, J. & Högstedt, B. Clinical, anthropometric, metabolic and insulin profile of men with fast annual growth rates of benign prostatic hyperplasia. Blood Press. 8, 29–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Hammarsten, J. & Högstedt, B. Hyperinsulinemia as a risk factor for developing benign prostatic hyperplasia. Eur. Urol. 39, 151–158 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Hammarsten, J. & Högstedt, B. Calculated fast-growing benign prostatic hyperplasia—a risk factor for developing clinical prostate cancer. Scand. J. Urol. Nephrol. 36, 330–338 (2002).

    Article  PubMed  Google Scholar 

  13. Hammarsten, J. et al. Insulin and free estradiol are independent risk factors for benign prostatic hyperplasia. Prostate Cancer Prostate Dis. 12, 160–165 (2009).

    Article  CAS  Google Scholar 

  14. Hammarsten, J. & Högstedt, B. Clinical, hemodynamic, anthropometric, metabolic and insulin profile of men with high stage and high grade clinical prostate cancer. Blood Press. 13, 47–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Hammarsten, J. & Högstedt, B. Hyperinsulinemia: A prospective risk factor for lethal clinical prostate cancer. Eur. J. Cancer 41, 2887–2895 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Hammarsten, J., Damber, J.-E., Peeker, R., Mellström, D. & Högstedt, B. A higher prediagnostic insulin level is a prospective risk factor for incident prostate cancer. Cancer Epidemiol. 34, 574–579 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Hald, T. Urodynamics in benign prostatic hyperplasia: a survey. Prostate Suppl. 2, 69–77 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Deters, L. A., Costabile, R. A., Leveillee, R. J., Moore, C. R. & Patel, V. R. Benign prostatic hypertrophy. Medscape Reference [online], (2004).

    Google Scholar 

  19. Parsons, J. K. et al. Metabolic factors associated with benign prostatic hyperplasia. J. Clin. Endocrinol. Metab. 91, 2562–2568 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Barnard, R. J., Aronson, W. J., Tymchuk, C. N. & Ngo, T. H. Prostate cancer: another aspect of the insulin-resistance syndrome? Obes. Rev. 3, 303–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Giovannucci, E. Nutrition, insulin, insulin-like growth factors and cancer. Horm. Metab. Res. 35, 694–704 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Chan, J. M. et al. Plasma insulin-like growth factor-1 and prostate cancer risk: a prospective study. Science 279, 563–566 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Parsons, J. K. et al. Metabolic factors associated with benign prostatic hyperplasia. J. Clin. Endocrinol. Metab. 91, 2562–2568 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Nandeesha, H., Koner, B. C, Dorairajan, L. N. & Sen, S. K. Hyperinsulinemia and dyslipidaemia in non-diabetic benign prostatic hyperplasia. Clinica Chimica Acta. 370, 89–93 (2006).

    Article  CAS  Google Scholar 

  25. Guo, L. J. et al. Association study between benign prostatic hyperplasia and primary hypertension. Zhonghua Wai Ke Za Zhi. 43, 108–111 (2005).

    PubMed  Google Scholar 

  26. Roehrborn, C. et al. Baseline data from the Combination of Avodart and Tamsulosin (COMBAT) trial: relationships between body mass index and LUTS. BPH measures. Eur. Urol. Suppl. 5, 195 (2006).

    Google Scholar 

  27. Ochiai, A., Fritsche, H. A. & Babaian, R. J. Influence of anthropometric measurements, age, and prostate volume on prostate-specific antigen levels in men with a low risk of prostate cancer. Urology 66, 819–823 (2005).

    Article  PubMed  Google Scholar 

  28. Li, P. J., Zhang, X. H., Guo, L. J. & Na, Y. Q. Correlation of benign prostatic hyperplasia with hyperlipemia. Zhonghua Wai Ke Za Zhi. 43, 387–389 (2005).

    CAS  PubMed  Google Scholar 

  29. Ozden, C. et al. The correlation between metabolic syndrome and prostatic growth in patients with benign prostatic hyperplasia. Eur. Urol. 51, 199–203 (2007).

    Article  PubMed  Google Scholar 

  30. McVary, K. T., Rademaker, A., Granville, L. L. & Gann, P. Automatic nervous system overactivity in men with lower urinary tract symptoms secondary to benign prostatic hyperplasia. J. Urol. 174, 1327–1333 (2005).

    Article  PubMed  Google Scholar 

  31. Ullrich, P. M., Lutgendorf, S. K. & Kreder, K. J. Physiologic reactivity to a laboratory stress task among men with benign prostatic hyperplasia. Urology 70, 487–492 (2007).

    Article  PubMed  Google Scholar 

  32. Meigs, K. B., Mohr, B., Barry, M. J., Collins, M. M. & McKinlay, J. B. Risk factors for clinical benign prostatic hyperplasia in a community-based population of healthy aging men. J. Clin. Epidemiol. 54, 935–944 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Rohrman, S., Smit, E., Giovannucci, E. & Platz, E. A. Association between markers of the metabolic syndrome and lower urinary tract symptoms in the Third National health and nutrition examination Survey (NHANES III). Int. J. Obes. (Lond.) 29, 310–316 (2005).

    Article  Google Scholar 

  34. Rohrman, S., Smit, E., Giovannucci, E. & Platz, E. A. Association of obesity with lower urinary tract symptoms and noncancer prostate surgery in the third national health and nutrition examination survey. Am. J. Epidemiol. 159, 390–397 (2004).

    Article  Google Scholar 

  35. Kupelian, V. Association of lower urinary tract symptoms and the metabolic syndrome: results from the Boston area community health survey. J. Urol. 182, 616–625 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dahle, S. E. et al. Body size and serum levels of insulin and leptin in relation to the risk of benign prostatic hyperplasia. J. Urol. 168, 599–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Vikram, A., Gopabandhu, J. & Ramarao, P. Insulin-resistance and benign prostatic hyperplasia: the connection. Eur. J. Pharmacol. 641, 75–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Vikram, A., Jena, G. B. & Ramarao, P. Increased cell proliferation and contractility of prostate in insulin resistant rats: linking hyperinsulinemia with benign prostate hyperplasia. Prostate 70, 79–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Hsing, A. W. et al. Prostate cancer risk and serum levels of insulin and leptin: a population-based study. J. Natl Cancer Inst. 93, 783–789 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Hsing, A. W., Gao, Y.-T., Chua, S. Jr, Deng, J. & Stanczyk, F. Z. Insulin resistance and prostate cancer risk. J. Natl Cancer Inst. 95, 67–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Lehrer, S., Diamond, E. J., Stagger, S., Stone, N. N. & Stock, R. G. Increased serum insulin associated with increased risk of prostate cancer recurrence. Prostate 50, 1–3 (2002).

    Article  PubMed  Google Scholar 

  42. Lehrer, S., Diamond, E. J., Stagger, S., Stone, N. N. & Stock, R. G. Serum insulin level, disease stage, prostate-specific antigen (PSA) and Gleason score in prostate cancer. Br. J. Cancer 87, 726–728 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, J. et al. Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis. Lancet Oncol. 9, 1039–1047 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gong, Z., Agalliu, I., Lin, D. W., Stanford, J. L. & Kristal, A. R. Obesity is associated with increased risks of prostate cancer metastasis and death after initial cancer diagnosis in middle-aged men. Cancer 109, 1192–1202 (2007).

    Article  PubMed  Google Scholar 

  45. Freedland, S. J., Terris, M. K., Platz, E. A. & Presti, J. C. Jr. Body mass index as a predictor of prostate cancer: development versus detection on biopsy. Urology 66, 108–113 (2005).

    Article  PubMed  Google Scholar 

  46. Freedland, S. J., Banez, L. L., Fitsimons, N. J. & Moul, J. W. Obese men have higher-grade and larger tumors: an analysis of the duke prostate center database. Prostate Cancer Prostatic Dis. 12, 259–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. MacInnis, R. J., English, D. R., Gertig, D. M., Hopper, J. L. & Giles, G. G. Body size and composition and prostate cancer risk Cancer Epidemiol. Biomarkers Prev. 12, 1417–1421 (2003).

    PubMed  Google Scholar 

  48. Rodriguez, C., Freedland, S. J. & Deka, A. Body mass index, weight change, and risk of prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiol. Biomarkers Prev. 16, 63–69 (2007).

    Article  PubMed  Google Scholar 

  49. Lund Håheim, L., Wislöff, T. F., Holme, I. & Nafstad, P. Metabolic syndrome predicts prostate cancer in a cohort of middle-aged Norwegian men followed for 27 years. Am. J. Epidemiol. 164, 769–774 (2006).

    Article  PubMed  Google Scholar 

  50. Laukkanen, J. A. et al. Metabolic syndrome and the risk of prostate cancer in Finnish men: a population-based study. Cancer Epidemiol. Biomarkers Prev. 13, 1646–1650 (2004).

    CAS  PubMed  Google Scholar 

  51. Martin, R. M., Vatten, L., Gunnell, D., Romunstad, P. & Nilsen, T. I. Components of the metabolic syndrome and risk of prostate cancer: the HUNT 2 cohort, Norway. Cancer Causes Control 20, 1181–1192 (2009).

    Article  PubMed  Google Scholar 

  52. Beebe-Dimmer, J. L., Dunn, R. L., Samma, A. V., Montie, J. E. & Cooney, K. A. Features of the metabolic syndrome and prostate cancer in African-American. Cancer 109, 875–881 (2007).

    Article  PubMed  Google Scholar 

  53. Beebe-Dimmer, J. L. et al. Racial differences in risk of prostate cancer associated with metabolic syndrome. Urology 74, 185–190 (2009).

    Article  PubMed  Google Scholar 

  54. Tande, A. J., Platz, E. A. & Folsom, A. R. The metabolic syndrome is associated with reduced risk of prostate cancer. Am. J. Epidemiol. 164, 1094–1102 (2006).

    Article  PubMed  Google Scholar 

  55. Laaksonen, D. E. et al. Sex hormones, inflammation and the metabolic syndrome: a population-based study. Eur. J. Endocrinol. 149, 601–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Laaksonen, D. E. et al. Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care 27, 1036–1034 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Haffner, S. M., Valdez, R. A., Mykkänen, L., Stern, M. P. & Katz, M. S. Decreased testosterone sulfate concentrations are associated with increased insulin and glucose concentrations in nondiabetic men. Metabolism 43, 599–603 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Freedland, S. J. & Platz, E. A. Obesity and prostate cancer: making sense out of apparently conflicting data. Epidemiol. Rev. 29, 88–97 (2007).

    Article  PubMed  Google Scholar 

  59. Fowke, J. H. et al. Association between prostate-specific antigen and leptin, adiponectin, HbA1c or C-peptide among African-American. Prostate Cancer Prostatic Dis. 11, 264–269 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Ohwaki, K., Endo, F,. Muraishi, O., Hiramatsu, S. & Yano, E. Relationship between prostate-specific antigen and hematocrit: does hemodilution lead to a lower PSA concentrations in men with a higher body mass index? Urology 75, 648–653 (2010).

    Article  PubMed  Google Scholar 

  61. Li, Q. et al. History of diabetes mellitus and the risk of prostate cancer: the Ohsaki Cohort Study. Cancer Causes Control 21, 1025–1032 (2010).

    Article  PubMed  Google Scholar 

  62. Stocks, T., Hergens, M. P., Englund, A., Ye, W. & Stattin P. Blood pressure, body size and prostate cancer risk in Swedish construction workers cohort. Int. J. Cancer 227, 1660–1668 (2010).

    Article  CAS  Google Scholar 

  63. Freedland, S. J. Obesity is a significant risk factor for prostate cancer at the time of biopsy. Urology 72, 1102–1105 (2008).

    Article  PubMed  Google Scholar 

  64. Albanes, D. et al. Serum insulin, glucose, indices of insulin resistance, and risk of prostate cancer. J. Natl Cancer Inst. 101, 1272–1279 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, C. et al. Prostate carcinoma incidence in relation to prediagnostic circulating levels of insulin-like growth factor I, insulin-like growth factor binding protein 3, and insulin. Cancer 103, 76–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Stattin, P. et al. Leptin is associated with increased prostate cancer risk: a nested case-referent study. J. Clin. Endocrinol. Metab. 86, 1341–1345 (2001).

    CAS  PubMed  Google Scholar 

  67. Hubbard, J. S. et al. Association of prostate cancer risk with insulin, glucose, and anthropometry in the Baltimore longitudinal study of aging. Urology 63, 253–258 (2004).

    Article  PubMed  Google Scholar 

  68. Stocks, T. et al. Insulin resistance is inversely related to prostate cancer: a prospective study in Northern Sweden. Int. J. Cancer 120, 2678–2686 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Morley, J. E. et al. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism 46, 410–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Araujo, A. B. et al. Prevalence and incidence of androgen deficiency in middle-aged and older men: estimates from the Massachusetts Male Aging Study. J. Clin. Endocrinol. Metab. 89, 5920–5926 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Mulligan, T., Frick, M. F., Zuraw, Q. Z., Stemhagen, A. & McWhirter, C. Prevalence of hypogonadism in males aged at least 45 years: the HIM study. Int. J. Clin. Pract. 60, 762–769 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guay, A. T. The emerging link between hypogonadism and metabolic syndrome. J. Androl. 30, 370–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Selvin, E. et al. Androgens and diabetes in men: results from the Third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care 30, 234–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Stellato, R. K. et al. Testosterone, sex hormone-binding globuline, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts male aging study. Diabetes Care 23, 490–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Haffner, S. M. et al. Decreased testosterone and dehydroepiandrosterone sulfat concentrations are associated with increased insulin and glucose concentrations in nondiabetic men. Metabolism 43, 599–603 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Laaksonen, D. E. et al. Sex hormones, inflammation and the metabolic syndrome: a population-based study. Eur. J. Endocrinol. 149, 601–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Phillips, G. B., Jing, T. & Heymsfield, S. B. Relationships in men of sex hormones, insulin, adiposity, and risk factors for myocardial infarction. Metabolism 52, 784–790 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Simon, D. et al. Interrelation between plasma testosterone and plasma insulin in healthy adult men: the Telecom study. Diabetologia 35, 173–177 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Khaw, K. T. & Barrett-Connor, E. Blood pressure and endogenous testosterone in men: an inverse relationship. J. Hypertens. 6, 329–332 (1988).

    Article  CAS  PubMed  Google Scholar 

  80. Svartberg, J., von Muhlen, D., Schirmer, H., Barrett-Connor, E. & Sundfjord, J. Association of endogenous testosterone with blood pressure and left ventricular mass in men. The Tromsö Study. Eur. J. Endocrinol. 150, 65–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Corona, G. et al. The age-related decline of testosterone is associated with different specific symptoms and signs in patients with sexual dysfunction. Int. J. Androl. 32, 720–728 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Niskanen, L. et al. Changes in sex hormone-binding globulin and testosterone during weight loss and weight maintenance in abdominally obese men with the metabolic syndrome. Diabetes Obes. Metab. 6, 208–215 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Cohen, P. G. Obesity in men: the hypogonadal-estrogen receptor relationship and its effect on glucose homeostasis. Med. Hypotheses 70, 358–360 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Vermeulen, A., Kaufman, J. M., Deslypere, J. P. & Thomas, G. Attenuated luteinizing hormone (LH) pulse amplitude but normal pulse frequency, and its relation to plasma androgens in hypogonadism of obese men. J. Clin. Endocrinol. Metab. 76, 1140–1146 (1993).

    CAS  PubMed  Google Scholar 

  85. Cohen, P. G. The role of estradiol in the maintenance of secondary hypogonadism in males in erectile dysfunction. Med. Hypotheses 50, 331–333 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Zumoff, B., Miller, L. K. & Strain, G. W. Reversal of the hypogonadotropic hypogonadism of obese men by administration of the aromatase inhibitor testolactone. Metabolism 52, 1126–1128 (1993).

    Article  CAS  Google Scholar 

  87. Rosmond, R., Dallman, M. F. & Björntorp, P. Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J. Clin. Endocrinol. Metab. 83, 1853–1859 (1998).

    CAS  PubMed  Google Scholar 

  88. Chrousos, G. P. Stressors, stress, and neuroendocrine integration of the adaptive response. The 1997 Hans Selye Memorial Lecture. Ann. NY Acad. Sci. 851, 311–335 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Stamatelou, K. K., Francis, M. E., Jones, C. A., Nyberg, L. M. Jr & Curhan, G. C. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 63, 1817–1823 (2003).

    Article  PubMed  Google Scholar 

  90. Sakhaee, K. Recent advances in the pathophysiology of nephrolithiasis. Kidney Int. 75, 585–595 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Gorbachinsky, I., Akpinar, H. & Assimos, D. G. Metabolic syndrome and urologic diseases. Rev. Urol. 12, 157–180 (2010).

    Google Scholar 

  92. Cameron, M. A., Maalouf, N. M., Adams-Huet, B., Moe, O. W. & Sakhaee, K. Urine composition in type 2 diabetes. Predisposition to uric acid nephrolithiasis. J. Am. Soc. Nephrol. 17, 1422–1428 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Pak, C. Y. et al. Biochemical profile of stone-forming patients with diabetes mellitus. Urology 61, 523–527 (2003).

    Article  PubMed  Google Scholar 

  94. Taylor, E. N., Stampfer, M. J. & Gurhan, G. C. Diabetes mellitus and the risk of nephrolithiasis. Kidney Int. 68, 1230–1235 (2005).

    Article  PubMed  Google Scholar 

  95. Domingos, F. & Serra, A. Nephrolithiasis is associated with an increased prevalence of cardiovascular disease. Nephrol. Dial. Transplant 26, 864–868 (2011).

    Article  PubMed  Google Scholar 

  96. Hamano, S. et al. Kidney stone disease and risk factors for coronary heart disease. Int. J. Urol. 12, 859–863 (2005).

    Article  PubMed  Google Scholar 

  97. Taylor, E. N., Stampfer, M. J. & Gurhan, G. C. Obesity, weight gain, and the risk of kidney stones. JAMA 293, 455–462 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Rendina, D. et al. Association between metabolic syndrome and nephrolithiasis in an inpatient population in southern Italy: role of gender, hypertension, and abdominal obesity. Nephrol. Dial. Transplant. 24, 900–906 (2009).

    Article  PubMed  Google Scholar 

  99. Curhan, G. C., Willett, W. C., Rimm, E. B., Speizer, F. E. & Stampfer, M. J. Body size and risk of kidney stones. J. Am. Soc. Nephrol. 9, 1645–1652 (1989).

    Google Scholar 

  100. Cappuccio, F. P. et al. A prospective study of hypertension and the incidence of kidney stones in men. J. Hypertens. 17, 1017–1022 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Obligado, S. H. & Goldfarb, D. S. The association of nephrolithiasis with hypertension and obesity: a review. Am. J. Hypertens. 21, 257–264 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. West, B. et al. Metabolic syndrome and self-reported history of kidney stones: the National Health and Nutrition Examination Survey (NHANES III) 1988–1994. Am. J. Kidney Dis. 51, 741–747 (2008).

    Article  PubMed  Google Scholar 

  103. Chapple, C. R. & Roehrborn, C. G. A shifted paradigm for the further understanding, evaluation, and treatment of lower urinary tract symptoms in men: focus on the bladder. Eur. Urol. 49, 651–659 (2006).

    Article  PubMed  Google Scholar 

  104. Irwin, D. E. et al. Population-based survey of urinary incontinence, overactive bladder, and lower urinary tract symptoms in five countries. Results of the EPIC study. Eur. Urol. 50, 1306–1325 (2006).

    Article  PubMed  Google Scholar 

  105. Le, K.-A. & Tappy, L. Metabolic effects of fructose. Curr. Opin. Clin. Nutr. Metab. Care 9, 469–475 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Lee, W.-C., Chien, C.-T., Yu, H.-J. & Lee, S.-W. Bladder dysfunction in rats with metabolic syndrome induced by long-term fructose feeding. J. Urol. 179, 2470–2476 (2008).

    Article  PubMed  Google Scholar 

  107. Tong, Y.-C. & Cheng, J.-T. Alterations of M2,3-muscarinic receptor protein and mRNA expression in the bladder of the fructose fed obese rat. J. Urol. 178, 1537–1542 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Brown, J. S. et al. Prevalence of urinary incontinence and associated risk factors in postmenopausal women. Obstet. Gynecol. 94, 66–70 (1999).

    CAS  PubMed  Google Scholar 

  109. Danforth, K. N., Townsend, M. K., Curhan, G. C., Resnik, N. M. & Grodstein, F. Type 2 diabetes mellitus and risk of stress, urge and mixed urinary incontinence. J. Urol. 181, 193–197 (2009).

    Article  PubMed  Google Scholar 

  110. Tai, H. C. et al. Metabolic syndrome components worsen lower urinary tract symptoms in women with type 2 diabetes. J. Clin. Endocrinol. Metab. 95, 1143–1150 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Lawrence, J. M., Lukacz, E. S., Amy Liu, I.-L., Nager, C. W. & Luber, K. M. Pelvic floor disorders, diabetes, and obesity in women. Diabetes Care 30, 2536–2541 (2007).

    Article  PubMed  Google Scholar 

  112. Hong, G. S., Shim, B. S., Chung, W. S. & Yoon, H. Correlation between metabolic syndrome and lower urinary tract symptoms of males and females in the aspect of gender-specific medicine: A single institutional study. Korean J. Urol. 51, 631–635 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Aslan, G. et al. Association between lower urinary tract symptoms and erectile dysfunction. Arch. Androl. 52, 155–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Irwin, D. E. et al. Overactive bladder is associated with erectile dysfunction and reduced sexual quality of life in men. J. Sex Med. 5, 2904–2910 (2008).

    Article  PubMed  Google Scholar 

  115. Dallosso, H. M., McGrother, C. W., Matthews, R. J. & Donaldson, M. M. K. The association of diet and other lifestyle factors with overactive bladder and stress incontinence: a longitudinal study in women. BJU Int. 92, 69–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Feldman, H. A. et al. Impotence and its medical and psychosocial correlates: results from the Massachusetts Male Aging Study. J. Urol. 151, 54–61 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. McKinlay, J. B. The worldwide prevalence and epidemiology of erectile dysfunction. Int. J. Impot. Res. 12 (Suppl. 4), S6–S11 (2000).

    Article  PubMed  Google Scholar 

  118. Aslan, Y. et al. Is type 2 diabetes mellitus a cause of severe erectile dysfunction in patients with metabolic syndrome. Urology 74, 561–565 (2009).

    Article  PubMed  Google Scholar 

  119. Saigal, C. S., Wessels, H., Pace, J., Schonlau, M. & Wilt, T. J. Predictors and prevalence of erectile dysfunction in a racially diverse population. Arch. Intern. Med. 166, 207–212 (2006).

    Article  PubMed  Google Scholar 

  120. Demir, T. Prevalence of erectile dysfunction in patients with metabolic syndrome. Int. J. Urol. 13, 385–388 (2006).

    Article  PubMed  Google Scholar 

  121. Bal, K. et al. Prevalence of metabolic syndrome and its association with erectile dysfunction among urologic patients: metabolic backgrounds of erectile dysfunction. Urology 69, 356–360 (2007).

    Article  PubMed  Google Scholar 

  122. El-Sakka, A. I. & Morsy, A. M. Screening for ischemic heart disease in patients with erectile dysfunction: role of penile Doppler ultrasonography. Urology 64, 346–350 (2004).

    Article  PubMed  Google Scholar 

  123. El Sakka, A. I., Morsy, A. M., Fagih, B. I. & Nassar, A. H. Coronary artery risk factors in patients with erectile dysfunction. J. Urol. 172, 251–254 (2004).

    Article  PubMed  Google Scholar 

  124. Jackson, G. Sexual response in cardiovascular disease. J. Sex Res. 46, 233–236 (2009).

    Article  PubMed  Google Scholar 

  125. Al-Hunayan, A., Al-Mutar, M., Kehind, E. O., Thalib, L. & Al-Ghorory, M. The prevalence and predictors of erectile dysfunction in men with newly diagnosed with type 2 diabetes mellitus. BJU Int. 99, 130–134 (2007).

    Article  PubMed  Google Scholar 

  126. Tomada, N., Tomada, I., Botelho, F., Cruz, F. & Vendeira, P. Are all metabolic syndrome components responsible for penile hemodynamics impairment in patients with erectile dysfunction? The role of body fat mass assessment. J. Sex Med. 8, 831–839 (2011).

    Article  PubMed  Google Scholar 

  127. Kupelian, V., Shabsig, R., Araujo, A. B., O'Donell, A. B. & McKinlay, J. B. Erectile dysfunction as a predictor of the metabolic syndrome in aging men: results from the Massachusetts male aging study. J. Urol. 176, 222–226 (2006).

    Article  PubMed  Google Scholar 

  128. Corona, G. et al. The age-related decline of testosterone is associated with different specific symptoms and signs in patients with sexual dysfunction Int. J. Androl. 32, 720–728 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Reilly, C. M., Zamorano, P., Stopper, V. S. & Mills, T. M. Androgenic regulation of NO availability in rat penile erection. J. Androl. 18, 110–115 (1997).

    CAS  PubMed  Google Scholar 

  130. Shamloul, R. et al. Correlation between penile duplex findings and stress electrocardiography in men with erectile dysfunction. Int. J. Impot. Res. 16, 235–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Blumentals, W. A., Gomez-Caminero, A., Joo, S. & Vannappagari, V. Should erectile dysfunction be considered as a marker for acute myocardial infarction? Results from a retrospective cohort study. Int. J. Impot. Res. 16, 350–353 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Chen, C. J., Kuo, T. B., Tseng, Y. J. & Yang, C. C. Combined cardiac sympathetic excitation and vagal impairment in patients with non-organic erectile dysfunction. Clin. Neurophysiol. 120, 348–352 (2009).

    Article  PubMed  Google Scholar 

  133. Kirby, R. S., O'Leary, M. P. & Carson, C. Efficacy of extended-release doxazosin and doxazosin standard in patients with concomitant benign prostatic hyperplasia and sexual dysfunction. BJU Int. 95, 103–109 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. De Rose, A. F. et al. Observational multicentric trial performed with doxazosin: evaluation of sexual effects on patients with diagnosed benign prostatic hyperplasia. Urol. Int. 68, 95–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Liguori, G. et al. Efficacy of combined oral therapy with tadalafil and alfuzosin: an integrated approach to management of patients with lower urinary tract symptoms and erectile dysfunction. Preliminary report. J. Sex Med. 6, 544–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Kaplan, S. A., Gonzeles, R. R. & Te, A. E. Combination of alfuzosin and sildenafil is superior to monotherapy in treating lower urinary tract symptoms and erectile dysfunction. Eur. Urol. 51, 1717–1723 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Rosen, R. et al. Lower urinary tract symptoms and male sexual dysfunction: the multinational survey of the aging male (M-SAM-7). Eur. Urol. 44, 637–649 (2003).

    Article  PubMed  Google Scholar 

  138. McVary, K. T. Lower urinary tract symptoms and sexual dysfunction: epidemiology and pathphysiology. BJU Int. 97 (Suppl. 2), 23–28 (2006).

    Article  PubMed  Google Scholar 

  139. Faris, J. E. & Smith, M. R. Metabolic sequele associated with androgen deprivation therapy for prostate cancer. Curr. Opin. Endocrinol. Diabetes Obes. 17, 240–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li, C. et al. Trends in hyperinsulinemia among nondiabetic adults in the US. Diabetes Care 29, 2396–2402 (2006).

    Article  PubMed  Google Scholar 

  141. Tuomilehto, J. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Friedenreich, C. M., Neilson, H. K. & Lynch, B. M. State of the epidemiological evidence on physical activity and cancer prevention. Eur. J. Cancer 46, 2593–2604 (2010).

    Article  PubMed  Google Scholar 

  143. Jönsson, T. et al. A paleolithic diet confers higher insulin sensitivity, lower C-reactive protein and lower blood pressure than a cereal based diet in domestic pigs. Nutr. Metab. (Lond.) 3, 39 (2006).

    Article  CAS  Google Scholar 

  144. Lindeberg, S. et al. A Palaeolithical diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischemic heart disease. Diabetologia 50, 1795–1807 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Frassetto, L. A., Schloetter, M., Mietus-Synder, M., Morris, R. C. Jr & Sebastian, A. Metabolic and physiologic improvements from consuming a paleolithic, hunter-gatherer type diet. Eur. J. Clin. Nutr. 63, 947–955 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Acheson, K. J. Carbohydrate for weight and metabolic control: where do we stand? Nutrition 26, 141–145 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by funding from the Swedish Cancer Society and the Scientific Council, County of Halland, Sweden.

Author information

Authors and Affiliations

Authors

Contributions

J. Hammarsten and R. Peeker researched data for the article. J. Hammarsten wrote the manuscript, and both authors reviewed and edited the article before submission.

Corresponding author

Correspondence to Jan Hammarsten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammarsten, J., Peeker, R. Urological aspects of the metabolic syndrome. Nat Rev Urol 8, 483–494 (2011). https://doi.org/10.1038/nrurol.2011.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing