Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genomic landscape of testicular germ cell tumours: from susceptibility to treatment

Key Points

  • Testicular germ cell tumour (TGCT) has notably high heritability with commensurate high familial relative risks compared with other cancers

  • Genome-wide association studies have identified 25 loci for TGCT, consistent with a highly polygenic architecture underlying the genetic susceptibility

  • Intratubular germ cell neoplasia unclassified, the noninvasive precursor of TGCT, is molecularly similar to primordial germ cells and likely arises during fetal development, lying dormant in the gonads until puberty

  • Testicular tumours are mutationally stable and are characterized by KIT and KRAS mutations at modest frequency. Large-scale chromosomal gains are common in testicular tumours. Nearly all tumours carry isochromosome 12p, which is likely to be a key triggering event for malignant transformation

  • Platinum resistance affects <10% of patients but results in poor outcomes; although extensively investigated through somatic and germline pharmacogenomic studies, the mechanism remains obscure

Abstract

The genomic landscape of testicular germ cell tumour (TGCT) can be summarized using four overarching hypotheses. Firstly, TGCT risk is dominated by inherited genetic factors, which determine nearly half of all disease risk and are highly polygenic in nature. Secondly KIT–KITLG signalling is currently the major pathway that is implicated in TGCT formation, both as a predisposition risk factor and a somatic driver event. Results from genome-wide association studies have also consistently suggested that other closely related pathways involved in male germ cell development and sex determination are associated with TGCT risk. Thirdly, the method of disease formation is unique, with tumours universally stemming from a noninvasive precursor lesion, probably of fetal origin, which lies dormant through childhood into adolescence and then eventually begins malignant growth in early adulthood. Formation of a 12p isochromosome, a hallmark of TGCT observed in nearly all tumours, is likely to be a key triggering event for malignant transformation. Finally, TGCT have been shown to have a distinctive somatic mutational profile, with a low rate of point mutations contrasted with frequent large-scale chromosomal gains. These four hypotheses by no means constitute a complete model that explains TGCT tumorigenesis, but advances in genomic technologies have enabled considerable progress in describing and understanding the disease. Further advancing our understanding of the genomic basis of TGCT offers a clear opportunity for clinical benefit in terms of preventing invasive cancer arising in young men, decreasing the burden of chemotherapy-related survivorship issues and reducing mortality in the minority of patients who have treatment-refractory disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The genomic features of testicular germ cell tumours, summarized using a timeline approach.
Figure 2: KIT–KITLG signalling showing genes related to this pathway.
Figure 3: Testicular germ cell tumour susceptibility loci that have been identified through genome-wide association studies.

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Devesa, S. S., McGlynn, K. A. & Moller, H. Interpreting the international trends in testicular seminoma and nonseminoma incidence. Nat. Clin. Pract. Urol. 3, 532–543 (2006).

    PubMed  Google Scholar 

  2. Ruf, C. G. et al. Changes in epidemiologic features of testicular germ cell cancer: age at diagnosis and relative frequency of seminoma are constantly and significantly increasing. Urol. Oncol. 32, 33.e1–33.e6 (2014).

    Google Scholar 

  3. Le Cornet, C. et al. Testicular cancer incidence to rise by 25% by 2025 in Europe? Model-based predictions in 40 countries using population-based registry data. Eur. J. Cancer 50, 831–839 (2014).

    PubMed  Google Scholar 

  4. de Haas, E. C. et al. Early development of the metabolic syndrome after chemotherapy for testicular cancer. Ann. Oncol. 24, 749–755 (2013).

    CAS  PubMed  Google Scholar 

  5. Bujan, L. et al. Impact of chemotherapy and radiotherapy for testicular germ cell tumors on spermatogenesis and sperm DNA: a multicenter prospective study from the CECOS network. Fertil. Steril. 100, 673–680 (2013).

    CAS  PubMed  Google Scholar 

  6. Rusner, C. et al. Risk of second primary cancers after testicular cancer in East and West Germany: a focus on contralateral testicular cancers. Asian J. Androl. 16, 285–289 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Nitzsche, B. et al. Anti-tumour activity of two novel compounds in cisplatin-resistant testicular germ cell cancer. Br. J. Cancer 107, 1853–1863 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Swerdlow, A. J., De Stavola, B. L., Swanwick, M. A. & Maconochie, N. E. Risks of breast and testicular cancers in young adult twins in England and Wales: evidence on prenatal and genetic aetiology. Lancet 350, 1723–1728 (1997).

    CAS  PubMed  Google Scholar 

  9. McGlynn, K. A., Devesa, S. S., Graubard, B. I. & Castle, P. E. Increasing incidence of testicular germ cell tumors among black men in the United States. J. Clin. Oncol. 23, 5757–5761 (2005).

    PubMed  Google Scholar 

  10. Hemminki, K. & Li, X. Familial risk in testicular cancer as a clue to a heritable and environmental aetiology. Br. J. Cancer 90, 1765–1770 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kharazmi, E. et al. Cancer risk in relatives of testicular cancer patients by histology type and age at diagnosis: a joint study from five Nordic countries. Eur. Urol. 68, 283–289 (2015).

    PubMed  Google Scholar 

  12. Litchfield, K. et al. Quantifying the heritability of testicular germ cell tumour using both population-based and genomic approaches. Sci. Rep. 5, 13889 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Locatelli, I., Lichtenstein, P. & Yashin, A. I. The heritability of breast cancer: a Bayesian correlated frailty model applied to Swedish twins data. Twin Res. 7, 182–191 (2004).

    PubMed  Google Scholar 

  14. Kampman, E. A first-degree relative with colorectal cancer: what are we missing? Cancer Epidemiol. Biomarkers Prev. 16, 1–3 (2007).

    PubMed  Google Scholar 

  15. Crockford, G. P. et al. Genome-wide linkage screen for testicular germ cell tumour susceptibility loci. Hum. Mol. Genet. 15, 443–451 (2006).

    CAS  PubMed  Google Scholar 

  16. Rapley, E. A. et al. Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nat. Genet. 24, 197–200 (2000).

    CAS  PubMed  Google Scholar 

  17. Nathanson, K. L. et al. The Y deletion gr/gr and susceptibility to testicular germ cell tumor. Am. J. Hum. Genet. 77, 1034–1043 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pathak, A. et al. Prospectively identified incident testicular cancer risk in a familial testicular cancer cohort. Cancer Epidemiol. Biomarkers Prev. 24, 1614–1621 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. Rapley, E. A. et al. A genome-wide association study of testicular germ cell tumor. Nat. Genet. 41, 807–810 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Turnbull, C. & Rahman, N. Genome-wide association studies provide new insights into the genetic basis of testicular germ-cell tumour. Int. J. Androl. 34, e86–e96; discussion e96–e97 (2011).

    CAS  PubMed  Google Scholar 

  21. Kanetsky, P. A. et al. Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat. Genet. 41, 811–815 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Turnbull, C. et al. Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer. Nat. Genet. 42, 604–607 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kanetsky, P. A. et al. A second independent locus within DMRT1 is associated with testicular germ cell tumor susceptibility. Hum. Mol. Genet. 20, 3109–3117 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ruark, E. et al. Identification of nine new susceptibility loci for testicular cancer, including variants near DAZL and PRDM14. Nat. Genet. 45, 686–689 (2013).

    CAS  PubMed  Google Scholar 

  25. Bojesen, S. E. et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat. Genet. 45, 371–384 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chung, C. C. et al. Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nat. Genet. 45, 680–685 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Litchfield, K. et al. Multi-stage genome wide association study identifies new susceptibility locus for testicular germ cell tumour on chromosome 3q25. Hum. Mol. Genet. 24, 1169–1176 (2015).

    CAS  PubMed  Google Scholar 

  28. Kristiansen, W. et al. Two new loci and gene sets related to sex determination and cancer progression are associated with susceptibility to testicular germ cell tumor. Hum. Mol. Genet. 24, 4138–4146 (2015).

    CAS  PubMed  Google Scholar 

  29. Chanock, S. High marks for GWAS. Nat. Genet. 41, 765–766 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Boldajipour, B. & Raz, E. What is left behind — quality control in germ cell migration. Sci. STKE 2007, e16 (2007).

    Google Scholar 

  31. Roskoski, R. Jr. Signaling by Kit protein-tyrosine kinase — the stem cell factor receptor. Biochem. Biophys. Res. Commun. 337, 1–13 (2005).

    CAS  PubMed  Google Scholar 

  32. Heaney, J. D., Lam, M. Y., Michelson, M. V. & Nadeau, J. H. Loss of the transmembrane but not the soluble kit ligand isoform increases testicular germ cell tumor susceptibility in mice. Cancer Res. 68, 5193–5197 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zeron-Medina, J. et al. A polymorphic p53 response element in KIT ligand influences cancer risk and has undergone natural selection. Cell 155, 410–422 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sasaki, A. et al. Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Cell Cycle 2, 281–282 (2003).

    CAS  PubMed  Google Scholar 

  35. Yan, W., Samson, M., Jegou, B. & Toppari, J. Bcl-w forms complexes with Bax and Bak, and elevated ratios of Bax/Bcl-w and Bak/Bcl-w correspond to spermatogonial and spermatocyte apoptosis in the testis. Mol. Endocrinol. 14, 682–699 (2000).

    CAS  PubMed  Google Scholar 

  36. Yu, M. et al. The scaffolding adapter Gab2, via Shp-2, regulates kit-evoked mast cell proliferation by activating the Rac/JNK pathway. J. Biol. Chem. 281, 28615–28626 (2006).

    CAS  PubMed  Google Scholar 

  37. Schrans-Stassen, B. H., Saunders, P. T., Cooke, H. J. & de Rooij, D. G. Nature of the spermatogenic arrest in Dazl-/- mice. Biol. Reprod. 65, 771–776 (2001).

    CAS  PubMed  Google Scholar 

  38. Tsuneyoshi, N. et al. PRDM14 suppresses expression of differentiation marker genes in human embryonic stem cells. Biochem. Biophys. Res. Commun. 367, 899–905 (2008).

    CAS  PubMed  Google Scholar 

  39. Smith, C. A., McClive, P. J., Western, P. S., Reed, K. J. & Sinclair, A. H. Conservation of a sex-determining gene. Nature 402, 601–602 (1999).

    CAS  PubMed  Google Scholar 

  40. Krentz, A. D. et al. The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency. Proc. Natl Acad. Sci. USA 106, 22323–22328 (2009).

    CAS  PubMed  Google Scholar 

  41. Litchfield, K., Shipley, J. & Turnbull, C. Common variants identified in genome-wide association studies of testicular germ cell tumour: an update, biological insights and clinical application. Andrology 3, 34–46 (2015).

    CAS  PubMed  Google Scholar 

  42. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. McGlynn, K. A. & Cook, M. B. Etiologic factors in testicular germ-cell tumors. Future Oncol. 5, 1389–1402 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Skakkebaek, N. E., Rajpert-De Meyts, E. & Main, K. M. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum. Reprod. 16, 972–978 (2001).

    CAS  PubMed  Google Scholar 

  45. Trabert, B., Zugna, D., Richiardi, L., McGlynn, K. A. & Akre, O. Congenital malformations and testicular germ cell tumors. Int. J. Cancer 133, 1900–1904 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Coffey, J. et al. Testicular microlithiasis as a familial risk factor for testicular germ cell tumour. Br. J. Cancer 97, 1701–1706 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nizetic, D. & Groet, J. Tumorigenesis in Down's syndrome: big lessons from a small chromosome. Nat. Rev. Cancer 12, 721–732 (2012).

    CAS  PubMed  Google Scholar 

  48. Hasle, H., Mellemgaard, A., Nielsen, J. & Hansen, J. Cancer incidence in men with Klinefelter syndrome. Br. J. Cancer 71, 416–420 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Litchfield, K. et al. Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours. Nat. Commun. 6, 5973 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Stettner, A. R. et al. Familial ovarian germ cell cancer: report and review. Am. J. Med. Genet. 84, 43–46 (1999).

    CAS  PubMed  Google Scholar 

  51. Kristensen, D. G., Skakkebaek, N. E., Rajpert-De Meyts, E. & Almstrup, K. Epigenetic features of testicular germ cell tumours in relation to epigenetic characteristics of foetal germ cells. Int. J. Dev. Biol. 57, 309–317 (2013).

    CAS  PubMed  Google Scholar 

  52. Karlsson, R. et al. Investigation of six testicular germ cell tumor susceptibility genes suggests a parent-of-origin effect in SPRY4. Hum. Mol. Genet. 22, 3373–3380 (2013).

    CAS  PubMed  Google Scholar 

  53. Oosterhuis, J. W. & Looijenga, L. H. Testicular germ-cell tumours in a broader perspective. Nat. Rev. Cancer 5, 210–222 (2005).

    CAS  PubMed  Google Scholar 

  54. Kristensen, D. M. et al. Origin of pluripotent germ cell tumours: the role of microenvironment during embryonic development. Mol. Cell. Endocrinol. 288, 111–118 (2008).

    CAS  PubMed  Google Scholar 

  55. Skakkebaek, N. E., Berthelsen, J. G., Giwercman, A. & Muller, J. Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int. J. Androl. 10, 19–28 (1987).

    CAS  PubMed  Google Scholar 

  56. Rajpert-De Meyts, E. Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum. Reprod. Update 12, 303–323 (2006).

    CAS  PubMed  Google Scholar 

  57. Jacobsen, G. K. & Henriques, U. V. A fetal testis with intratubular germ cell neoplasia (ITGCN). Mod. Pathol. 5, 547–549 (1992).

    CAS  PubMed  Google Scholar 

  58. Biermann, K. et al. c-KIT is frequently mutated in bilateral germ cell tumours and down-regulated during progression from intratubular germ cell neoplasia to seminoma. J. Pathol. 213, 311–318 (2007).

    CAS  PubMed  Google Scholar 

  59. Fossa, S. D. et al. Risk of contralateral testicular cancer: a population-based study of 29,515 U.S. men. J. Natl Cancer Inst. 97, 1056–1066 (2005).

    PubMed  Google Scholar 

  60. Coffey, J. et al. Somatic KIT mutations occur predominantly in seminoma germ cell tumors and are not predictive of bilateral disease: report of 220 tumors and review of literature. Genes Chromosomes Cancer 47, 34–42 (2008).

    CAS  PubMed  Google Scholar 

  61. Horwich, A., Shipley, J. & Huddart, R. Testicular germ-cell cancer. Lancet 367, 754–765 (2006).

    CAS  PubMed  Google Scholar 

  62. Rajpert-De Meyts, E. et al. The emerging phenotype of the testicular carcinoma in situ germ cell. APMIS 111, 267–278; discussion 278–279 (2003).

    PubMed  Google Scholar 

  63. Dieckmann, K. P., Kulejewski, M., Heinemann, V. & Loy, V. Testicular biopsy for early cancer detection — objectives, technique and controversies. Int. J. Androl. 34, e7–e13 (2011).

    PubMed  Google Scholar 

  64. Almstrup, K. et al. Genome-wide gene expression profiling of testicular carcinoma in situ progression into overt tumours. Br. J. Cancer 92, 1934–1941 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Biermann, K. et al. Genome-wide expression profiling reveals new insights into pathogenesis and progression of testicular germ cell tumors. Cancer Genomics Proteomics 4, 359–367 (2007).

    CAS  PubMed  Google Scholar 

  66. Gori, S. et al. Germ cell tumours of the testis. Crit. Rev. Oncol. Hematol. 53, 141–164 (2005).

    PubMed  Google Scholar 

  67. Mai, P. L. et al. The International Testicular Cancer Linkage Consortium: a clinicopathologic descriptive analysis of 461 familial malignant testicular germ cell tumor kindred. Urol. Oncol. 28, 492–499 (2010).

    PubMed  Google Scholar 

  68. Forman, D. et al. Familial testicular cancer: a report of the UK family register, estimation of risk and an HLA class 1 sib-pair analysis. Br. J. Cancer 65, 255–262 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cutcutache, I. et al. Exome-wide sequencing shows low mutation rates and identifies novel mutated genes in seminomas. Eur. Urol. 68, 77–83 (2015).

    CAS  PubMed  Google Scholar 

  70. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. McIntyre, A. et al. Amplification and overexpression of the KIT gene is associated with progression in the seminoma subtype of testicular germ cell tumors of adolescents and adults. Cancer Res. 65, 8085–8089 (2005).

    CAS  PubMed  Google Scholar 

  72. Kemmer, K. et al. KIT mutations are common in testicular seminomas. Am. J. Pathol. 164, 305–313 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, H. J. et al. KIT D816 mutation associates with adverse outcomes in core binding factor acute myeloid leukemia, especially in the subgroup with RUNX1/RUNX1T1 rearrangement. Ann. Hematol. 92, 163–171 (2013).

    CAS  PubMed  Google Scholar 

  74. Bignell, G. et al. Sequence analysis of the protein kinase gene family in human testicular germ-cell tumors of adolescents and adults. Genes Chromosomes Cancer 45, 42–46 (2006).

    CAS  PubMed  Google Scholar 

  75. Heidenreich, A. et al. Immunohistochemical and mutational analysis of the p53 tumour suppressor gene aml the bcl-2 oncogene in primary testicular germ cell, tumours. APMIS 106, 90–99 (1998).

    CAS  PubMed  Google Scholar 

  76. Laumann, R., Jucker, M. & Tesch, H. Point mutations in the conserved regions of the p53 tumor suppressor gene do not account for the transforming process in the Jurkat acute lymphoblastic leukemia T-cells. Leukemia 6, 227–228 (1992).

    CAS  PubMed  Google Scholar 

  77. Voorhoeve, P. M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2006).

    CAS  PubMed  Google Scholar 

  78. Li, B., Cheng, Q., Li, Z. & Chen, J. p53 inactivation by MDM2 and MDMX negative feedback loops in testicular germ cell tumors. Cell Cycle 9, 1411–1420 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Suijkerbuijk, R. F. et al. Overrepresentation of chromosome 12p sequences and karyotypic evolution in i(12p)-negative testicular germ-cell tumors revealed by fluorescence in situ hybridization. Cancer Genet. Cytogenet. 70, 85–93 (1993).

    CAS  PubMed  Google Scholar 

  80. Atkin, N. B. & Baker, M. C. Specific chromosome change, i(12p), in testicular-tumors. Lancet 2, 1349–1349 (1982).

    CAS  PubMed  Google Scholar 

  81. Atkin, N. B. & Baker, M. C. i(12p): specific chromosomal marker in seminoma and malignant teratoma of the testis. Cancer Genet. Cytogenet. 10, 199–204 (1983).

    CAS  PubMed  Google Scholar 

  82. Sandberg, A. A., Meloni, A. M. & Suijkerbuijk, R. F. Reviews of chromosome studies in urological tumors.3. Cytogenetics and genes in testicular tumors. J. Urol. 155, 1531–1556 (1996).

    CAS  PubMed  Google Scholar 

  83. Rodriguez, S. et al. Expression profile of genes from 12p in testicular germ cell tumors of adolescents and adults associated with i(12p) and amplification at 12p11.2–p12.1. Oncogene 22, 1880–1891 (2003).

    CAS  PubMed  Google Scholar 

  84. Korkola, J. E. et al. Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res. 66, 820–827 (2006).

    CAS  PubMed  Google Scholar 

  85. Ottesen, A. M. et al. High-resolution comparative genomic hybridization detects extra chromosome arm 12p material in most cases of carcinoma in situ adjacent to overt germ cell tumors, but not before the invasive tumor development. Genes Chromosomes Cancer 38, 117–125 (2003).

    CAS  PubMed  Google Scholar 

  86. Summersgill, B., Osin, P. S., Lu, Y. J., Huddart, R. & Shipley, J. Chromosomal imbalances associated with carcinoma in situ and associated testicular germ cell tumours of adolescents and adults. Br. J. Cancer 85, 213–219 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Henegariu, O., Vance, G. H., Heiber, D., Pera, M. & Heerema, N. A. Triple-color FISH analysis of 12p amplification in testicular germ-cell tumors using 12p band-specific painting probes. J. Mol. Med. (Berl.) 76, 648–655 (1998).

    CAS  Google Scholar 

  88. Roelofs, H. et al. Restricted 12p amplification and RAS mutation in human germ cell tumors of the adult testis. Am. J. Pathol. 157, 1155–1166 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Summersgill, B. et al. Molecular cytogenetic analysis of adult testicular germ cell tumours and identification of regions of consensus copy number change. Br. J. Cancer 77, 305–313 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zafarana, G. et al. 12p-amplicon structure analysis in testicular germ cell tumors of adolescents and adults by array CGH. Oncogene 22, 7695–7701 (2003).

    CAS  PubMed  Google Scholar 

  91. LeBron, C. et al. Genome-wide analysis of genetic alterations in testicular primary seminoma using high resolution single nucleotide polymorphism arrays. Genomics 97, 341–349 (2011).

    CAS  PubMed  Google Scholar 

  92. Brown, P. R., Miki, K., Harper, D. B. & Eddy, E. M. A-kinase anchoring protein 4 binding proteins in the fibrous sheath of the sperm flagellum. Biol. Reprod. 68, 2241–2248 (2003).

    CAS  PubMed  Google Scholar 

  93. Chemes, H. E., Brugo, S., Zanchetti, F., Carrere, C. & Lavieri, J. C. Dysplasia of the fibrous sheath: an ultrastructural defect of human spermatozoa associated with sperm immotility and primary sterility. Fertil. Steril. 48, 664–669 (1987).

    CAS  PubMed  Google Scholar 

  94. Miki, K. et al. Targeted disruption of the Akap4 gene causes defects in sperm flagellum and motility. Dev. Biol. 248, 331–342 (2002).

    CAS  PubMed  Google Scholar 

  95. Vladusic, T. et al. Histological groups of human postpubertal testicular germ cell tumours harbour different genetic alterations. Anticancer Res. 34, 4005–4012 (2014).

    CAS  PubMed  Google Scholar 

  96. Oldenburg, J. et al. Testicular seminoma and non-seminoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24, 125–132 (2013).

    Google Scholar 

  97. Siegel, R. et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clinicians 62, 220–241 (2012).

    Google Scholar 

  98. Usanova, S. et al. Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression. Mol.Cancer 9, 248 (2010).

    PubMed  PubMed Central  Google Scholar 

  99. Cavallo, F. et al. Reduced proficiency in homologous recombination underlies the high sensitivity of embryonal carcinoma testicular germ cell tumors to cisplatin and poly (ADP-ribose) polymerase inhibition. PLoS ONE 7, e51563 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gutekunst, M. et al. p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin. PLoS ONE 6, e19198 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sheikine, Y. et al. Molecular genetics of testicular germ cell tumors. Am. J. Cancer Res. 2, 153–167 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Honecker, F. et al. Microsatellite instability, mismatch repair deficiency, and BRAF mutation in treatment-resistant germ cell tumors. J. Clin. Oncol. 27, 2129–2136 (2009).

    CAS  PubMed  Google Scholar 

  103. Feldman, D. R. et al. Presence of somatic mutations within PIK3CA, AKT, RAS, and FGFR3 but not BRAF in cisplatin-resistant germ cell tumors. Clin. Cancer Res. 20, 3712–3720 (2014).

    CAS  PubMed  Google Scholar 

  104. Van Allen, E. M. et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov. 4, 1140–1153 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Einhorn, L. H., Brames, M. J., Heinrich, M. C., Corless, C. L. & Madani, A. Phase II study of imatinib mesylate in chemotherapy refractory germ cell tumors expressing KIT. Am. J. Clin. Oncol. 29, 12–13 (2006).

    CAS  PubMed  Google Scholar 

  106. Noel, E. E. et al. The association of CCND1 overexpression and cisplatin resistance in testicular germ cell tumors and other cancers. Am. J. Pathol. 176, 2607–2615 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Garcia-Velasco, A. et al. Biological markers of cisplatin resistance in advanced testicular germ cell tumours. Clin. Transl. Oncol. 14, 452–457 (2012).

    CAS  PubMed  Google Scholar 

  108. de Haas, E. C. et al. Association of PAI-1 gene polymorphism with survival and chemotherapy-related vascular toxicity in testicular cancer. Cancer 116, 5628–5636 (2010).

    CAS  PubMed  Google Scholar 

  109. Singhera, M., Lees, K., Huddart, R. & Horwich, A. Minimizing toxicity in early-stage testicular cancer treatment. Expert Rev. Anticancer Ther. 12, 185–193 (2012).

    CAS  PubMed  Google Scholar 

  110. Oldenburg, J. et al. Association between long-term neuro-toxicities in testicular cancer survivors and polymorphisms in glutathione-s-transferase-P1 and-M1, a retrospective cross sectional study. J. Transl. Med. 5, 70 (2007).

    PubMed  PubMed Central  Google Scholar 

  111. Peters, U. et al. Glutathione S-transferase genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Anticancer Drugs 11, 639–643 (2000).

    CAS  PubMed  Google Scholar 

  112. Huddart, R. A. et al. Fertility, gonadal and sexual function in survivors of testicular cancer. Br. J. Cancer 93, 200–207 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. O'Flaherty, C., Hales, B. F., Chan, P. & Robaire, B. Impact of chemotherapeutics and advanced testicular cancer or Hodgkin lymphoma on sperm deoxyribonucleic acid integrity. Fertil. Steril. 94, 1374–1379 (2010).

    CAS  PubMed  Google Scholar 

  114. Travis, L. B. et al. Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. J. Natl Cancer Inst. 97, 1354–1365 (2005).

    PubMed  Google Scholar 

  115. Greene, M. H. et al. Familial testicular germ cell tumors (FTGCT) — overview of a multidisciplinary etiologic study. Andrology 3, 47–58 (2015).

    CAS  PubMed  Google Scholar 

  116. Bahcall, O. Risk prediction and population screening for breast, ovarian and prostate cancers. Nat. Genet. http://dx.doi.org/10.1038/ngicogs.5 (2012).

  117. Litchfield, K. et al. Polygenic susceptibility to testicular cancer: implications for personalised health care. Br. J. Cancer 113, 1512–1518 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Almstrup, K. et al. Screening of subfertile men for testicular carcinoma in situ by an automated image analysis-based cytological test of the ejaculate. Int. J. Androl 34, e21–e30; discussion e30–e30 (2011).

    CAS  PubMed  Google Scholar 

  119. Hoei-Hansen, C. E. et al. Towards a non-invasive method for early detection of testicular neoplasia in semen samples by identification of fetal germ cell-specific markers. Hum. Reprod. 22, 167–173 (2007).

    CAS  PubMed  Google Scholar 

  120. Skol, A. D., Scott, L. J., Abecasis, G. R. & Boehnke, M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat. Genet. 38, 390–390 (2006).

    CAS  Google Scholar 

  121. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    CAS  PubMed  Google Scholar 

  122. Litchfield, K. Abstract 2986: meta-analysis of whole exome sequencing data reveals the mutational spectrum of testicular germ cell tumors. Cancer Res. 75, 2986 (2015).

    Google Scholar 

  123. Basten, S. G. et al. Mutations in LRRC50 predispose zebrafish and humans to seminomas. PLoS Genet. 9, e1003384 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Fukuda, S. et al. Expression of vascular endothelial growth factor in patients with testicular germ cell tumors as an indicator of metastatic disease. Cancer 85, 1323–1330 (1999).

    CAS  PubMed  Google Scholar 

  125. Nieto, Y. et al. Bevacizumab/high-dose chemotherapy with autologous stem-cell transplant for poor-risk relapsed or refractory germ-cell tumors. Ann. Oncol. http://dx.doi.org/10.1093/annonc/mdv310 (2015).

  126. Fankhauser, C. D. et al. Frequent PD-L1 expression in testicular germ cell tumors. Br. J. Cancer 113, 411–413 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Szklarczyk, D. et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

    CAS  PubMed  Google Scholar 

  128. Litchfield, K. et al. Identification of four new susceptibility loci for testicular germ cell tumour. Nat. Commun. 6, 8690 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.L. and M.L. researched data for the article, R.A.H., J.S. and C.T. contributed to discussion of its contents. K.L. wrote the manuscript and K.L., M.L. and C.T. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Clare Turnbull.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litchfield, K., Levy, M., Huddart, R. et al. The genomic landscape of testicular germ cell tumours: from susceptibility to treatment. Nat Rev Urol 13, 409–419 (2016). https://doi.org/10.1038/nrurol.2016.107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2016.107

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer