Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prostate cancer in young men: an important clinical entity

Key Points

  • The incidence of prostate cancer in young men (aged ≤55 years) has increased sharply over the past two decades, making early-onset prostate cancer an important emerging issue for public health

  • Increased screening in young men could account for some, but not all, of the increase in incidence of early-onset prostate cancer

  • Advanced-stage and high-grade early-onset prostate cancer might be a distinct clinicopathological subtype with more rapid progression to disease-specific death than late-onset prostate cancer of similar stage and grade

  • Men with early-onset prostate cancer tend to have a greater genetic risk than their older peers, making this group an ideal resource for investigating genetic susceptibility to prostate cancer

Abstract

Prostate cancer is considered a disease of older men (aged >65 years), but today over 10% of new diagnoses in the USA occur in young men aged ≤55 years. Early-onset prostate cancer, that is prostate cancer diagnosed at age ≤55 years, differs from prostate cancer diagnosed at an older age in several ways. Firstly, among men with high-grade and advanced-stage prostate cancer, those diagnosed at a young age have a higher cause-specific mortality than men diagnosed at an older age, except those over age 80 years. This finding suggests that important biological differences exist between early-onset prostate cancer and late-onset disease. Secondly, early-onset prostate cancer has a strong genetic component, which indicates that young men with prostate cancer could benefit from evaluation of genetic risk. Furthermore, although the majority of men with early-onset prostate cancer are diagnosed with low-risk disease, the extended life expectancy of these patients exposes them to long-term effects of treatment-related morbidities and to long-term risk of disease progression leading to death from prostate cancer. For these reasons, patients with early-onset prostate cancer pose unique challenges, as well as opportunities, for both research and clinical communities. Current data suggest that early-onset prostate cancer is a distinct phenotype—from both an aetiological and clinical perspective—that deserves further attention.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Incidence of prostate cancer by age group during 1973–2008.
Figure 2: Relative survival of men with prostate cancer by age at diagnosis (1994–2008).
Figure 3: Natural history of prostate cancer.
Figure 4: Change in mean latency time of prostate cancer in the US population by age during 1980–2010.

Similar content being viewed by others

References

  1. Howlader, N. et al. (eds) SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations), National Cancer Institute, Bethesda, MD [online], (2012).

  2. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    Article  PubMed  Google Scholar 

  3. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence–SEER 17 Regs Research Data + Hurricane Impacted Louisiana Cases 2010.

  4. Droz, J. P. et al. Management of prostate cancer in older men: recommendations of a working group of the International Society of Geriatric Oncology. BJU Int. 106, 462–469 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alibhai, S. M. et al. Is there age bias in the treatment of localized prostate carcinoma? Cancer 100, 72–81 (2004).

    Article  PubMed  Google Scholar 

  6. Potosky, A. L. et al. Five-year outcomes after prostatectomy or radiotherapy for prostate cancer: the prostate cancer outcomes study. J. Natl Cancer Inst. 96, 1358–1367 (2004).

    Article  PubMed  Google Scholar 

  7. Gronberg, H., Damber, J. E., Jonsson, H. & Lenner, P. Patient age as a prognostic factor in prostate cancer. J. Urol. 152, 892–895 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Harrison, G. S. The prognosis of prostatic cancer in the younger man. Br. J. Urol. 55, 315–320 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Benson, M. C., Kaplan, S. A. & Olsson, C. A. Prostate cancer in men less than 45 years old: influence of stage, grade and therapy. J. Urol. 137, 888–890 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Byar, D. P. & Mostofi, F. K. Cancer of the prostate in men less than 50 years old: an analysis of 51 cases. J. Urol. 102, 726–733 (1969).

    Article  CAS  PubMed  Google Scholar 

  11. Huben, R. et al. Carcinoma of prostate in men less than fifty years old. Data from American College of Surgeons' National Survey. Urology 20, 585–588 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. Silber, I. & McGavran, M. H. Adenocarcinoma of the prostate in men less than 56 years old: a study of 65 cases. J. Urol. 105, 283–285 (1971).

    Article  CAS  PubMed  Google Scholar 

  13. Smedley, H. M. et al. Age and survival in prostatic carcinoma. Br. J. Urol. 55, 529–533 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Riopel, M. A. et al. Radical prostatectomy in men less than 50 years old. Urol. Oncol. 1, 80–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Carter, H. B., Epstein, J. I. & Partin, A. W. Influence of age and prostate-specific antigen on the chance of curable prostate cancer among men with nonpalpable disease. Urology 53, 126–130 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Ruska, K. M., Partin, A. W., Epstein, J. I. & Kahane, H. Adenocarcinoma of the prostate in men younger than 40 years of age: diagnosis and treatment with emphasis on radical prostatectomy findings. Urology 53, 1179–1183 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Smith, C. V. et al. Prostate cancer in men age 50 years or younger: a review of the Department of Defense Center for Prostate Disease Research multicenter prostate cancer database. J. Urol. 164, 1964–1967 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Khan, M. A., Han, M., Partin, A. W., Epstein, J. I. & Walsh, P. C. Long-term cancer control of radical prostatectomy in men younger than 50 years of age: update 2003. Urology 62, 86–91 (2003).

    Article  PubMed  Google Scholar 

  19. Magheli, A. et al. Impact of patient age on biochemical recurrence rates following radical prostatectomy. J. Urol. 178, 1933–1937 (2007).

    Article  PubMed  Google Scholar 

  20. Twiss, C., Slova, D. & Lepor, H. Outcomes for men younger than 50 years undergoing radical prostatectomy. Urology 66, 141–146 (2005).

    Article  PubMed  Google Scholar 

  21. Burri, R. J. et al. Young men have equivalent biochemical outcomes compared with older men after treatment with brachytherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 77, 1315–1321 (2010).

    Article  PubMed  Google Scholar 

  22. Merrick, G. S. et al. Brachytherapy in men aged < or = 54 years with clinically localized prostate cancer. BJU Int. 98, 324–328 (2006).

    Article  PubMed  Google Scholar 

  23. Shapiro, E. Y. et al. Long-term outcomes in younger men following permanent prostate brachytherapy. J. Urol. 181, 1665–1671 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen, T. D. et al. The curative role of radiotherapy in adenocarcinoma of the prostate in patients under 55 years of age: a rare cancer network retrospective study. Radiother. Oncol. 77, 286–289 (2005).

    Article  PubMed  Google Scholar 

  25. Rossi, C. J. Jr et al. Influence of patient age on biochemical freedom from disease in patients undergoing conformal proton radiotherapy of organ-confined prostate cancer. Urology 64, 729–732 (2004).

    Article  PubMed  Google Scholar 

  26. Johnstone, P. A. et al. Effect of age on biochemical disease-free outcome in patients with T1-T3 prostate cancer treated with definitive radiotherapy in an equal-access health care system: a radiation oncology report of the Department of Defense Center for Prostate Disease Research. Int. J. Radiat. Oncol. Biol. Phys. 55, 964–969 (2003).

    Article  PubMed  Google Scholar 

  27. Wilson, J. M., Kemp, I. W. & Stein, G. J. Cancer of the prostate. Do younger men have a poorer survival rate? Br. J. Urol. 56, 391–396 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Tjaden, H. B., Culp, D. A. & Flocks, R. H. Clinical adenocarcinoma of the prostate in patients under 50 years of age. J. Urol. 93, 618–621 (1965).

    Article  CAS  PubMed  Google Scholar 

  29. Bratt, O., Kristoffersson, U., Olsson, H. & Lundgren, R. Clinical course of early onset prostate cancer with special reference to family history as a prognostic factor. Eur. Urol. 34, 19–24 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Johnson, D. E., Lanieri, J. P. & Ayala, A. G. Prostatic adenocarcinoma occurring in men under 50 years of age. J. Surg. Oncol. 4, 207–216 (1972).

    Article  CAS  PubMed  Google Scholar 

  31. Merrill, R. M. & Bird, J. S. Effect of young age on prostate cancer survival: a population-based assessment (United States). Cancer Causes Control 13, 435–443 (2002).

    Article  PubMed  Google Scholar 

  32. Lin, D. W., Porter, M. & Montgomery, B. Treatment and survival outcomes in young men diagnosed with prostate cancer: a Population-based Cohort Study. Cancer 115, 2863–2871 (2009).

    Article  PubMed  Google Scholar 

  33. CISNET. Cancer Intervention and Surveillance Modeling Network [online].

  34. Tsodikov, A., Szabo, A. & Wegelin, J. A population model of prostate cancer incidence. Stat. Med. 25, 2846–2866 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Chefo, S. & Tsodikov, A. Stage-specific cancer incidence: an artificially mixed multinomial logit model. Stat. Med. 28, 2054–2076 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zelen, M. & Feinleib, M. On the theory of screening for chronic diseases. Biometrika 56, 601–614 (1969).

    Article  Google Scholar 

  37. Brawley, O. W. Prostate cancer epidemiology in the United States. World J. Urol. 30, 195–200 (2012).

    Article  PubMed  Google Scholar 

  38. Zeegers, M. P., Jellema, A. & Ostrer, H. Empiric risk of prostate carcinoma for relatives of patients with prostate carcinoma: a meta-analysis. Cancer 97, 1894–1903 (2003).

    Article  PubMed  Google Scholar 

  39. Brandt, A., Bermejo, J. L., Sundquist, J. & Hemminki, K. Age-specific risk of incident prostate cancer and risk of death from prostate cancer defined by the number of affected family members. Eur. Urol. 58, 275–280 (2010).

    Article  PubMed  Google Scholar 

  40. Chen, Y. C., Page, J. H., Chen, R. & Giovannucci, E. Family history of prostate and breast cancer and the risk of prostate cancer in the PSA era. Prostate 68, 1582–1591 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kicinski, M., Vangronsveld, J. & Nawrot, T. S. An epidemiological reappraisal of the familial aggregation of prostate cancer: a meta-analysis. PLoS ONE 6, e27130 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carter, B. S., Beaty, T. H., Steinberg, G. D., Childs, B. & Walsh, P. C. Mendelian inheritance of familial prostate cancer. Proc. Natl Acad. Sci. USA 89, 3367–3371 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lynch, H. T. et al. Early age of onset in familial breast cancer. Genetic and cancer control implications. Arch. Surg. 111, 126–131 (1976).

    Article  CAS  PubMed  Google Scholar 

  44. Lynch, H. T. & de la Chapelle, A. Genetic susceptibility to non-polyposis colorectal cancer. J. Med. Genet. 36, 801–818 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vasen, H. F. et al. The epidemiology of endometrial cancer in hereditary nonpolyposis colorectal cancer. Anticancer Res. 14, 1675–1678 (1994).

    CAS  PubMed  Google Scholar 

  46. Lange, E. M. et al. Early onset prostate cancer has a significant genetic component. Prostate 72, 147–156 (2012).

    Article  PubMed  Google Scholar 

  47. Lindstrom, S. et al. Common genetic variants in prostate cancer risk prediction—results from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiol. Biomarkers Prev. 21, 437–444 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dennis, L. K. & Dawson, D. V. Meta-analysis of measures of sexual activity and prostate cancer. Epidemiology 13, 72–79 (2002).

    Article  PubMed  Google Scholar 

  49. Rohrmann, S. et al. Meat and dairy consumption and subsequent risk of prostate cancer in a US cohort study. Cancer Causes Control 18, 41–50 (2007).

    Article  PubMed  Google Scholar 

  50. Lynch, B. M. Sedentary behavior and cancer: a systematic review of the literature and proposed biological mechanisms. Cancer Epidemiol. Biomarkers Prev. 19, 2691–2709 (2010).

    Article  PubMed  Google Scholar 

  51. Ostrander, E. A. & Johannesson, B. Prostate cancer susceptibility loci: finding the genes. Adv. Exp. Med. Biol. 617, 179–190 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zeggini, E. et al. An evaluation of HapMap sample size and tagging SNP performance in large-scale empirical and simulated data sets. Nat. Genet. 37, 1320–1322 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Cirulli, E. T. & Goldstein, D. B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet. 11, 415–425 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Nelson, M. R. et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337, 100–104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tennessen, J. A. et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337, 64–69 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Keinan, A. & Clark, A. G. Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336, 740–743 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ewing, C. M. et al. Germline mutations in HOXB13 and prostate-cancer risk. N. Engl. J. Med. 366, 141–149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sreenath, T., Orosz, A., Fujita, K. & Bieberich, C. J. Androgen-independent expression of hoxb-13 in the mouse prostate. Prostate 41, 203–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Kim, Y. R. et al. HOXB13 promotes androgen independent growth of LNCaP prostate cancer cells by the activation of E2F signaling. Mol. Cancer 9, 124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Laitinen, V. H. et al. HOXB13 G84E mutation in Finland: population-based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol. Biomarkers Prev. 22, 452–460 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Chen, Z. et al. The G84E mutation of HOXB13 is associated with increased risk for prostate cancer: results from the REDUCE trial. Carcinogenesis 34, 1260–1264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kluzniak, W. et al. The G84E mutation in the HOXB13 gene is associated with an increased risk of prostate cancer in Poland. Prostate 73, 542–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Stott-Miller, M. et al. HOXB13 mutations in a population-based, case-control study of prostate cancer. Prostate 73, 634–641 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Witte, J. S. et al. HOXB13 mutation and prostate cancer: studies of siblings and aggressive disease. Cancer Epidemiol. Biomarkers Prev. 22, 675–680 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu, J. et al. HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum. Genet. 132, 5–14 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Gudmundsson, J. et al. A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer. Nat. Genet. 44, 1326–1329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Breyer, J. P., Avritt, T. G., McReynolds, K. M., Dupont, W. D. & Smith, J. R. Confirmation of the HOXB13 G84E germline mutation in familial prostate cancer. Cancer Epidemiol. Biomarkers Prev. 21, 1348–1353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zheng, S. L. et al. Cumulative association of five genetic variants with prostate cancer. N. Engl. J. Med. 358, 910–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Salinas, C. A. et al. Clinical utility of five genetic variants for predicting prostate cancer risk and mortality. Prostate 69, 363–372 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Helfand, B. T. et al. Genetic prostate cancer risk assessment: common variants in 9 genomic regions are associated with cumulative risk. J. Urol. 184, 501–505 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zheng, S. L. et al. Genetic variants and family history predict prostate cancer similar to prostate-specific antigen. Clin. Cancer Res. 15, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu, J. et al. Estimation of absolute risk for prostate cancer using genetic markers and family history. Prostate 69, 1565–1572 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sun, J. et al. Chromosome 8q24 risk variants in hereditary and non-hereditary prostate cancer patients. Prostate 68, 489–497 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Nam, R. K. et al. Utility of incorporating genetic variants for the early detection of prostate cancer. Clin. Cancer Res. 15, 1787–1793 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Beuten, J. et al. Single and multigenic analysis of the association between variants in 12 steroid hormone metabolism genes and risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev. 18, 1869–1880 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Sun, J. et al. Cumulative effect of five genetic variants on prostate cancer risk in multiple study populations. Prostate 68, 1257–1262 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Penney, K. L. et al. Evaluation of 8q24 and 17q Risk Loci and Prostate Cancer Mortality. Clin. Cancer Res. 15, 3223–3230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sun, J. et al. Inherited genetic markers discovered to date are able to identify a significant number of men at considerably elevated risk for prostate cancer. Prostate 71, 421–430 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Helfand, B. T., Kan, D., Modi, P. & Catalona, W. J. Prostate cancer risk alleles significantly improve disease detection and are associated with aggressive features in patients with a “normal” prostate specific antigen and digital rectal examination. Prostate 71, 394–402 (2011).

    Article  PubMed  Google Scholar 

  81. Aly, M. et al. Polygenic risk score improves prostate cancer risk prediction: results from the Stockholm-1 cohort study. Eur. Urol. 60, 21–28 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wiklund, F. E. et al. Established prostate cancer susceptibility variants are not associated with disease outcome. Cancer Epidemiol. Biomarkers Prev. 18, 1659–1662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Klein, R. J. et al. Evaluation of multiple risk-associated single nucleotide polymorphisms versus prostate-specific antigen at baseline to predict prostate cancer in unscreened men. Eur. Urol. 61, 471–477 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Schroder, F. & Kattan, M. W. The comparability of models for predicting the risk of a positive prostate biopsy with prostate-specific antigen alone: a systematic review. Eur. Urol. 54, 274–290 (2008).

    Article  PubMed  Google Scholar 

  85. Montie, J. E. & Smith, J. A. Whitmoreisms: memorable quotes from Willet F. Whitmore Jr, M.D. Urology 63, 207–209 (2004).

    Article  PubMed  Google Scholar 

  86. Wilt, T. J. et al. Radical prostatectomy versus observation for localized prostate cancer. N. Engl. J. Med. 367, 203–213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Draisma, G. et al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J. Natl Cancer Inst. 101, 374–383 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Barry, M. J. & Mulley, A. J. Jr. Why are a high overdiagnosis probability and a long lead time for prostate cancer screening so important? J. Natl Cancer Inst. 101, 362–363 (2009).

    Article  PubMed  Google Scholar 

  89. Lin, D. W. et al. Genetic variants in the LEPR, CRY1, RNASEL, IL4, and ARVCF genes are prognostic markers of prostate cancer-specific mortality. Cancer Epidemiol. Biomarkers Prev. 20, 1928–1936 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cooperberg, M. R., Broering, J. M. & Carroll, P. R. Time trends and local variation in primary treatment of localized prostate cancer. J. Clin. Oncol. 28, 1117–1123 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sidana, A. et al. Treatment decision-making for localized prostate cancer: what younger men choose and why. Prostate 72, 58–64 (2012).

    Article  PubMed  Google Scholar 

  92. Zeliadt, S. B. et al. Why men choose one treatment over another: a review of patient decision making for localized prostate cancer. Cancer 106, 1865–1874 (2006).

    Article  PubMed  Google Scholar 

  93. Centers for Disease Control and Prevention. National Center for Health Statistics [online], (2013).

Download references

Acknowledgements

The authors' research work was supported by NIH research grants no R01 CA79596 (K.A.C.), R01 CA136621 to (K.A.C.), SPORE P50 CA69568 (A.T., K.A.C.) and CISNET U01 CA157224 (A.T.).

Author information

Authors and Affiliations

Authors

Contributions

C.A.S., A.T. and K.A.C. researched data for the manuscript. C.A.S., M.I.-H. and K.A.C. made substantial contributions to discussion of content and wrote the article. A.T., M.I.-H. and K.A.C. reviewed the manuscript before submission.

Corresponding author

Correspondence to Kathleen A. Cooney.

Ethics declarations

Competing interests

K.A.C. has received grants from the National Institutes of Health (R01 CA79596, R01 CA136621, SPORE P50 CA69568). A.T. has received a grant from the National Institutes of Health (CISNET U01 CA157224, SPORE P50 CA69568). The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salinas, C., Tsodikov, A., Ishak-Howard, M. et al. Prostate cancer in young men: an important clinical entity. Nat Rev Urol 11, 317–323 (2014). https://doi.org/10.1038/nrurol.2014.91

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2014.91

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer