Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis

Key Points

  • Three groups of voltage-gated potassium channel (VGKC) antibody-positive patients should be distinguished: patients with antibodies against leucine-rich glioma-inactivated 1 (LGI1), patients with antibodies against contactin-associated protein-like 2 (Caspr2), and patients lacking both of these antibodies

  • Patients with anti-LGI1 antibodies usually present with typical limbic encephalitis, including alteration of memory and behaviour, spatial disorientation and several types of seizures

  • Patients with anti-Caspr2 antibodies present with various syndromes that involve the CNS and/or PNS, which mainly consist of cognitive decline, epilepsy and peripheral nerve hyperexcitability

  • Patients with antibodies against LGI1 or Caspr2 usually respond well to immunotherapy

  • The clinical relevance of antibodies against the VGKC complex that lack reactivity against LGI1 and Caspr2 is uncertain; in patients with these antibodies, clinical assessment and ancillary tests prevail for the establishment of a diagnosis and formulation of treatment

Abstract

The discovery, in 2010, of autoantibodies against the extracellular proteins LGI1 and Caspr2 facilitated a change of view regarding the clinical importance of voltage-gated potassium channel (VGKC) antibodies. Currently, these antibodies are all classified as VGKC-complex antibodies, and are commonly considered to have a similar clinical value. However, studies from the past few years show that the immune responses mediated by these antibodies have differing clinical relevance. Here, we review the clinical importance of these immune responses in three settings: patients with anti-LGI1 antibodies, patients with anti-Caspr2 antibodies, and patients with antibodies against the VGKC complex that lack LGI1 and Caspr2 specificity. Antibodies against LGI1 and Caspr2 are associated with different but well-defined syndromes, whereas the clinical importance of VGKC-complex antibodies without LGI1 and Caspr2 specificity is questionable. We describe each of these syndromes, discuss the function of the target antigens and review the limited paediatric literature on the topic. The findings emphasize the importance of defining these disorders according to the molecular identity of the targets (LGI1 or Caspr2), and caution against the use of VGKC-complex antibodies for the diagnosis and treatment of patients without further definition of the antigen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of the LGI1 protein in the synapse.
Figure 2: Schematic overview of the Caspr2 protein in the juxtaparanodal region of myelinated axons.
Figure 3: LGI1 and Caspr2 immunohistochemistry on rat brain.
Figure 4: Proposed therapy scheme for anti-LGI1 encephalitis.

Similar content being viewed by others

References

  1. van Coevorden-Hameete, M. H., de Graaff, E., Titulaer, M. J., Hoogenraad, C. C. & Sillevis Smitt, P. A. Molecular and cellular mechanisms underlying anti-neuronal antibody mediated disorders of the central nervous system. Autoimmun. Rev. 13, 299–312 (2014).

    CAS  PubMed  Google Scholar 

  2. Dalmau, J. et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann. Neurol. 61, 25–36 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Lai, M. et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann. Neurol. 65, 424–434 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Lancaster, E. & Dalmau, J. Neuronal autoantigens — pathogenesis, associated disorders and antibody testing. Nat. Rev. Neurol. 8, 380–390 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Irani, S. R. et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia. Brain 133, 2734–2748 (2010).

    PubMed Central  PubMed  Google Scholar 

  6. Lai, M. et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol. 9, 776–785 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Shillito, P. et al. Acquired neuromyotonia: evidence for autoantibodies directed against K+ channels of peripheral nerves. Ann. Neurol. 38, 714–722 (1995).

    CAS  PubMed  Google Scholar 

  8. Isaacs, H. A syndrome of continuous muscle-fibre activity. J. Neurol. Neurosurg. Psychiatry 24, 319–325 (1961).

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Barber, P. A., Anderson, N. E. & Vincent, A. Morvan's syndrome associated with voltage-gated K+ channel antibodies. Neurology 54, 771–772 (2000).

    CAS  PubMed  Google Scholar 

  10. Buckley, C. et al. Potassium channel antibodies in two patients with reversible limbic encephalitis. Ann. Neurol. 50, 73–78 (2001).

    CAS  PubMed  Google Scholar 

  11. van Sonderen, A. et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 87, 1449–1456 (2016).

    CAS  PubMed  Google Scholar 

  12. Sagane, K., Ishihama, Y. & Sugimoto, H. LGI1 and LGI4 bind to ADAM22, ADAM23 and ADAM11. Int. J. Biol. Sci. 4, 387–396 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Zhou, Y. D. et al. Arrested maturation of excitatory synapses in autosomal dominant lateral temporal lobe epilepsy. Nat. Med. 15, 1208–1214 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Kole, M. J. et al. Selective loss of presynaptic potassium channel clusters at the cerebellar basket cell terminal pinceau in adam11 mutants reveals their role in ephaptic control of Purkinje cell firing. J. Neurosci. 35, 11433–11444 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Kalachikov, S. et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat. Genet. 30, 335–341 (2002).

    PubMed Central  PubMed  Google Scholar 

  16. Morante-Redolat, J. M. et al. Mutations in the LGI1/Epitempin gene on 10q24 cause autosomal dominant lateral temporal epilepsy. Hum. Mol. Genet. 11, 1119–1128 (2002).

    CAS  PubMed  Google Scholar 

  17. Fukata, Y. et al. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313, 1792–1795 (2006).

    CAS  PubMed  Google Scholar 

  18. Fukata, Y. et al. Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and epilepsy. Proc. Natl Acad. Sci. USA 107, 3799–3804 (2010).

    CAS  PubMed  Google Scholar 

  19. Ohkawa, T. et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors. J. Neurosci. 33, 18161–18174 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Hughes, E. G. et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J. Neurosci. 30, 5866–5875 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Peng, X. et al. Cellular plasticity induced by anti-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann. Neurol. 77, 381–398 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Arino, H. et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 87, 759–765 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Irani, S. R. et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann. Neurol. 72, 241–255 (2012).

    PubMed  Google Scholar 

  24. Bien, C. G. et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 135, 1622–1638 (2012).

    PubMed  Google Scholar 

  25. Gao, L. et al. Clinical characterization of autoimmune LGI1 antibody limbic encephalitis. Epilepsy Behav. 56, 165–169 (2016).

    PubMed  Google Scholar 

  26. Irani, S. R. et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann. Neurol. 69, 892–900 (2011).

    PubMed  Google Scholar 

  27. Li, Z., Cui, T., Shi, W. & Wang, Q. Clinical analysis of leucine-rich glioma inactivated-1 protein antibody associated with limbic encephalitis onset with seizures. Medicine (Baltimore) 95, e4244 (2016).

    CAS  Google Scholar 

  28. Olberg, H., Haugen, M., Storstein, A. & Vedeler, C. A. Neurological manifestations related to level of voltage-gated potassium channel antibodies. J. Neurol. Neurosurg. Psychiatry 84, 941–943 (2013).

    PubMed  Google Scholar 

  29. Paterson, R. W., Zandi, M. S., Armstrong, R., Vincent, A. & Schott, J. M. Clinical relevance of positive voltage-gated potassium channel (VGKC)-complex antibodies: experience from a tertiary referral centre. J. Neurol. Neurosurg. Psychiatry 85, 625–630 (2014).

    PubMed  Google Scholar 

  30. Shin, Y. W. et al. VGKC-complex/LGI1-antibody encephalitis: clinical manifestations and response to immunotherapy. J. Neuroimmunol. 265, 75–81 (2013).

    CAS  PubMed  Google Scholar 

  31. Navarro, V. et al. Motor cortex and hippocampus are the two main cortical targets in LGI1-antibody encephalitis. Brain 139, 1079–1093 (2016).

    PubMed  Google Scholar 

  32. Rocamora, R. et al. Pilomotor seizures: an autonomic semiology of limbic encephalitis? Seizure 23, 670–673 (2014).

    PubMed  Google Scholar 

  33. Iranzo, A. et al. Rapid eye movement sleep behavior disorder and potassium channel antibody-associated limbic encephalitis. Ann. Neurol. 59, 178–181 (2006).

    PubMed  Google Scholar 

  34. Finke, C. et al. Evaluation of cognitive deficits and structural hippocampal damage in encephalitis with leucine-rich, glioma-inactivated 1 antibodies. JAMA Neurol. 74, 50–59 (2017).

    PubMed  Google Scholar 

  35. Flanagan, E. P. et al. Basal ganglia T1 hyperintensity in LGI1-autoantibody faciobrachial dystonic seizures. Neurol. Neuroimmunol. Neuroinflamm. 2, e161 (2015).

    PubMed Central  PubMed  Google Scholar 

  36. Andrade, D. M., Tai, P., Dalmau, J. & Wennberg, R. Tonic seizures: a diagnostic clue of anti-LGI1 encephalitis? Neurology 76, 1355–1357 (2011).

    PubMed Central  PubMed  Google Scholar 

  37. Steriade, C., Mirsattari, S. M., Murray, B. J. & Wennberg, R. Subclinical temporal EEG seizure pattern in LGI1-antibody-mediated encephalitis. Epilepsia 57, e155–e160 (2016).

    CAS  PubMed  Google Scholar 

  38. Malter, M. P. et al. Outcome of limbic encephalitis with VGKC-complex antibodies: relation to antigenic specificity. J. Neurol. 261, 1695–1705 (2014).

    CAS  PubMed  Google Scholar 

  39. Irani, S. R. et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 136, 3151–3162 (2013).

    PubMed  Google Scholar 

  40. Huijbers, M. G. et al. The expanding field of IgG4-mediated neurological autoimmune disorders. Eur. J. Neurol. 22, 1151–1161 (2015).

    CAS  PubMed  Google Scholar 

  41. Irani, S. R., Gelfand, J. M., Bettcher, B. M., Singhal, N. S. & Geschwind, M. D. Effect of rituximab in patients with leucine-rich, glioma-inactivated 1 antibody-associated encephalopathy. JAMA Neurol. 71, 896–900 (2014).

    PubMed Central  PubMed  Google Scholar 

  42. Hacohen, Y. et al. Clinical relevance of voltage-gated potassium channel-complex antibodies in children. Neurology 85, 967–975 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Borusiak, P. et al. Autoantibodies to neuronal antigens in children with focal epilepsy and no prima facie signs of encephalitis. Eur. J. Paediatr. Neurol. 20, 573–579 (2016).

    PubMed  Google Scholar 

  44. Lin, J. J. et al. VGKC complex antibodies in pediatric severe acute encephalitis: a study and literature review. Brain Dev. 35, 630–635 (2013).

    PubMed  Google Scholar 

  45. Suleiman, J. et al. VGKC antibodies in pediatric encephalitis presenting with status epilepticus. Neurology 76, 1252–1255 (2011).

    CAS  PubMed  Google Scholar 

  46. Suleiman, J., Brilot, F., Lang, B., Vincent, A. & Dale, R. C. Autoimmune epilepsy in children: case series and proposed guidelines for identification. Epilepsia 54, 1036–1045 (2013).

    CAS  PubMed  Google Scholar 

  47. Wright, S. et al. Neuronal antibodies in pediatric epilepsy: clinical features and long-term outcomes of a historical cohort not treated with immunotherapy. Epilepsia 57, 823–831 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Traka, M. et al. Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers. J. Cell Biol. 162, 1161–1172 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Poliak, S. et al. Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J. Cell Biol. 162, 1149–1160 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Rasband, M. N. et al. Potassium channel distribution, clustering, and function in remyelinating rat axons. J. Neurosci. 18, 36–47 (1998).

    CAS  PubMed  Google Scholar 

  51. Devaux, J. & Gow, A. Tight junctions potentiate the insulative properties of small CNS myelinated axons. J. Cell Biol. 183, 909–921 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Penagarikano, O. et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147, 235–246 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Anderson, G. R. et al. Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development. Proc. Natl Acad. Sci. USA 109, 18120–18125 (2012).

    CAS  PubMed  Google Scholar 

  54. Rodenas-Cuadrado, P., Ho, J. & Vernes, S. C. Shining a light on CNTNAP2: complex functions to complex disorders. Eur. J. Hum. Genet. 22, 171–178 (2014).

    CAS  PubMed  Google Scholar 

  55. Olsen, A. L., Lai, Y., Dalmau, J., Scherer, S. S. & Lancaster, E. Caspr2 autoantibodies target multiple epitopes. Neurol. Neuroimmunol. Neuroinflamm. 2, e127 (2015).

    PubMed Central  PubMed  Google Scholar 

  56. Pinatel, D. et al. Inhibitory axons are targeted in hippocampal cell culture by anti-Caspr2 autoantibodies associated with limbic encephalitis. Front. Cell. Neurosci. 9, 265 (2015).

    PubMed Central  PubMed  Google Scholar 

  57. van Sonderen, A. et al. The clinical spectrum of Caspr2 antibody-associated disease. Neurology 87, 521–528 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Kortvelyessy, P. et al. Complement-associated neuronal loss in a patient with CASPR2 antibody-associated encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2, e75 (2015).

    PubMed Central  PubMed  Google Scholar 

  59. Joubert, B. et al. Characterization of a subtype of autoimmune encephalitis with anti-contactin-associated protein-like 2 antibodies in the cerebrospinal fluid, prominent limbic symptoms, and seizures. JAMA Neurol. 73, 1115–1124 (2016).

    PubMed  Google Scholar 

  60. Lancaster, E. et al. Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia. Ann. Neurol. 69, 303–311 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Becker, E. B. et al. Contactin-associated protein-2 antibodies in non-paraneoplastic cerebellar ataxia. J. Neurol. Neurosurg. Psychiatry 83, 437–440 (2012).

    PubMed Central  PubMed  Google Scholar 

  62. Sunwoo, J. S. et al. Clinical manifestations of patients with CASPR2 antibodies. J. Neuroimmunol. 281, 17–22 (2015).

    CAS  PubMed  Google Scholar 

  63. Torres-Vega, E. et al. Netrin1-receptor antibodies in thymoma-associated neuromyotonia with myasthenia gravis. Neurology 88, 1235–1242 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Bien, C. G. et al. Anti-contactin-associated protein-2 encephalitis: relevance of antibody titres, presentation and outcome. Eur. J. Neurol. 24, 175–186 (2017).

    CAS  PubMed  Google Scholar 

  65. van Sonderen, A., Arino, H., Dalmau, J. & Titulaer, M. J. Author response: the clinical spectrum of Caspr2 antibody-associated disease. Neurology 88, 333–334 (2017).

    PubMed  Google Scholar 

  66. Kim, S. Y. et al. Screening autoimmune anti-neuronal antibodies in pediatric patients with suspected autoimmune encephalitis. J. Epilepsy Res. 4, 55–61 (2014).

    PubMed Central  PubMed  Google Scholar 

  67. Hart, I. K., Maddison, P., Newsom-Davis, J., Vincent, A. & Mills, K. R. Phenotypic variants of autoimmune peripheral nerve hyperexcitability. Brain 125, 1887–1895 (2002).

    PubMed  Google Scholar 

  68. Klein, C. J., Lennon, V. A., Aston, P. A., McKeon, A. & Pittock, S. J. Chronic pain as a manifestation of potassium channel-complex autoimmunity. Neurology 79, 1136–1144 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Fujita, K. et al. Voltage-gated potassium channel complex antibodies in Creutzfeldt–Jakob disease. J. Neurol. 259, 2249–2250 (2012).

    PubMed  Google Scholar 

  70. Huda, S. et al. An 11-year retrospective experience of antibodies against the voltage-gated potassium channel (VGKC) complex from a tertiary neurological centre. J. Neurol. 262, 418–424 (2015).

    CAS  PubMed  Google Scholar 

  71. van Sonderen, A. et al. The relevance of VGKC positivity in the absence of LGI1 and Caspr2 antibodies. Neurology 86, 1692–1699 (2016).

    CAS  PubMed  Google Scholar 

  72. Lahoria, R. et al. Clinical-pathologic correlations in VGKC-subtyped autoimmune painful polyneuropathy. Muscle Nerve http://dx.doi.org/10.1002/mus.25371 (2016).

  73. Zandi, M. S. et al. Disease-relevant autoantibodies in first episode schizophrenia. J. Neurol. 258, 686–688 (2011).

    PubMed  Google Scholar 

  74. Graus, F. & Gorman, M. P. Voltage-gated potassium channel antibodies: game over. Neurology 86, 1657–1658 (2016).

    PubMed  Google Scholar 

  75. O'Sullivan, B. J. et al. When should we test for voltage-gated potassium channel complex antibodies? A retrospective case control study. J. Clin. Neurosci. 33, 198–204 (2016).

    CAS  PubMed  Google Scholar 

  76. Kotsenas, A. L. et al. MRI findings in autoimmune voltage-gated potassium channel complex encephalitis with seizures: one potential etiology for mesial temporal sclerosis. AJNR Am. J. Neuroradiol. 35, 84–89 (2014).

    CAS  PubMed  Google Scholar 

  77. Lilleker, J. B., Jones, M. S. & Mohanraj, R. VGKC complex antibodies in epilepsy: diagnostic yield and therapeutic implications. Seizure 22, 776–779 (2013).

    PubMed  Google Scholar 

  78. Boronat, A. et al. Analysis of antibodies to surface epitopes of contactin-2 in multiple sclerosis. J. Neuroimmunol. 244, 103–106 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Graus, F. et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 15, 391–404 (2016).

    PubMed Central  PubMed  Google Scholar 

  80. Haberlandt, E. et al. Limbic encephalitis in children and adolescents. Arch. Dis. Child. 96, 186–191 (2011).

    CAS  PubMed  Google Scholar 

  81. Dhamija, R. et al. Neuronal voltage-gated potassium channel complex autoimmunity in children. Pediatr. Neurol. 44, 275–281 (2011).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to discussion of content, writing and review and editing of the manuscript before submission. A.v.S, M.P.-P. and M.J.T. researched data for the article.

Corresponding author

Correspondence to Maarten J. Titulaer.

Ethics declarations

Competing interests

J.D. receives royalties from patents from Athena Diagnostics for the use of Ma2 and N-methyl-d-aspartate receptors (NMDAR) as autoantibody tests, and licensing fees from Euroimmun for a patent for the use of NMDAR as an autoantibody test. M.J.T. received research funds for serving on a scientific advisory board of MedImmune, Guidepoint Global, and a travel grant for lecturing in India from Sun Pharma, India. The other authors declare no competing interests.

Supplementary information

Supplementary information

Supplementary information S1–S5 (table) (PDF 486 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Sonderen, A., Petit-Pedrol, M., Dalmau, J. et al. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol 13, 290–301 (2017). https://doi.org/10.1038/nrneurol.2017.43

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing