Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nutrition in patients on peritoneal dialysis

Abstract

Protein–energy wasting (PEW) is prevalent among patients on dialysis and has emerged as an important risk factor for morbidity and mortality in these patients. Numerous factors, including inflammation, inadequate dialysis, insufficient nutrient intake, loss of protein during dialysis, chronic acidosis, hypercatabolic illness and comorbid conditions, are involved in the development of PEW. The causes and clinical features of PEW in patients on peritoneal dialysis and hemodialysis are comparable; assessment of the factors that lead to PEW in patients receiving peritoneal dialysis is important to ensure that PEW is managed correctly in these patients. For the past 20 years, much progress has been made in the prevention and treatment of PEW. However, the results of most nutritional intervention studies are inconclusive. In addition, the multifactorial and complicated pathogenesis of PEW makes it difficult to assess and treat. This Review summarizes the nutritional issues regarding the causes, assessment and treatment of PEW, with a focus on patients receiving peritoneal dialysis. In addition, an in-depth overview of the results of nutritional intervention studies is provided.

Key Points

  • Protein–energy wasting (PEW) is common and is an important risk factor for morbidity and mortality in patients on dialysis

  • Inflammation, inadequate dialysis, insufficient nutrient intake, loss of protein during dialysis, chronic acidosis, hypercatabolic illness, comorbid conditions, psychosocial factors and physical inactivity are involved in the development of PEW

  • Peritoneal dialysis itself might lead to PEW as continuous glucose absorption from peritoneal dialysis solutions, abdominal fullness induced by the dialysate and peritonitis can suppress appetite

  • No single test is precisely indicative of PEW; comprehensive diagnostic criteria for PEW proposed by the International Society of Renal Nutrition and Metabolism could be useful

  • A number of treatment options for PEW are available but improving nutritional status is difficult and no data have convincingly shown that nutritional intervention improves patient survival

  • A multidisciplinary approach to PEW management should be provided by providing nutritional assessment and support, dietary counseling, management of comorbid conditions, and by maintaining an adequate dialysis dose and preserving residual renal function

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kang, D. H., Kang, E. W., Choi, S. R., Yoon, S. Y. & Han, D. S. Nutritional problems of Asian peritoneal dialysis patients. Perit. Dial. Int. 23 (Suppl. 2), S58–S64 (2003).

    PubMed  Google Scholar 

  2. Cianciaruso, B. et al. Cross-sectional comparison of malnutrition in continuous ambulatory peritoneal dialysis and hemodialysis patients. Am. J. Kidney Dis. 26, 475–486 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Young, G. A. et al. Nutritional assessment of continuous ambulatory peritoneal dialysis patients: an international study. Am. J. Kidney Dis. 17, 462–471 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Fouque, D. et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 73, 391–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Dukkipati, R. & Kopple, J. D. Causes and prevention of protein-energy wasting in chronic kidney failure. Semin. Nephrol. 29, 39–49 (2009).

    Article  PubMed  Google Scholar 

  6. Kopple, J. D. Effect of nutrition on morbidity and mortality in maintenance dialysis patients. Am. J. Kidney Dis. 24, 1002–1009 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Bergstrom, J. Nutrition and mortality in hemodialysis. J. Am. Soc. Nephrol. 6, 1329–1341 (1995).

    CAS  PubMed  Google Scholar 

  8. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J. Am. Soc. Nephrol. 7, 198–207 (1996).

  9. Dong, J., Li, Y., Xu, Y. & Xu, R. Daily protein intake and survival in patients on peritoneal dialysis. Nephrol. Dial. Transplant. 26, 3715–3721 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Bergstrom, J. Why are dialysis patients malnourished? Am. J. Kidney Dis. 26, 229–241 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, A. Y. et al. Independent effects of residual renal function and dialysis adequacy on actual dietary protein, calorie, and other nutrient intake in patients on continuous ambulatory peritoneal dialysis. J. Am. Soc. Nephrol. 12, 2450–2457 (2001).

    CAS  PubMed  Google Scholar 

  12. Wang, A. Y. & Lai, K. N. The importance of residual renal function in dialysis patients. Kidney Int. 69, 1726–1732 (2006).

    Article  PubMed  Google Scholar 

  13. Chung, S. H., Stenvinkel, P., Lindholm, B. & Avesani, C. M. Identifying and managing malnutrition stemming from different causes. Perit. Dial. Int. 27 (Suppl. 2), S239–S244 (2007).

    PubMed  Google Scholar 

  14. Bossola, M. et al. Malnutrition in hemodialysis patients: what therapy? Am. J. Kidney Dis. 46, 371–386 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Chung, S. H., Carrero, J. J. & Lindholm, B. Causes of poor appetite in patients on peritoneal dialysis. J. Ren. Nutr. 21, 12–15 (2011).

    Article  PubMed  Google Scholar 

  16. Stenvinkel, P., Heimburger, O., Lindholm, B., Kaysen, G. A. & Bergstrom, J. Are there two types of malnutrition in chronic renal failure? Evidence for relationships between malnutrition, inflammation and atherosclerosis (MIA syndrome). Nephrol. Dial. Transplant. 15, 953–960 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Noh, H. et al. Serum C-reactive protein: a predictor of mortality in continuous ambulatory peritoneal dialysis patients. Perit. Dial. Int. 18, 387–394 (1998).

    CAS  PubMed  Google Scholar 

  18. Stenvinkel, P., Chung, S. H., Heimburger, O. & Lindholm, B. Malnutrition, inflammation, and atherosclerosis in peritoneal dialysis patients. Perit. Dial. Int. 21 (Suppl. 3), S157–S162 (2001).

    PubMed  Google Scholar 

  19. de Mutsert, R. et al. Excess mortality due to interaction between protein-energy wasting, inflammation and cardiovascular disease in chronic dialysis patients. Nephrol. Dial. Transplant. 23, 2957–2964 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Mitch, W. E., Du, J., Bailey, J. L. & Price, S. R. Mechanisms causing muscle proteolysis in uremia: the influence of insulin and cytokines. Miner. Electrolyte Metab. 25, 216–219 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Aguilera, A. et al. Anorexigen (TNF-alpha, cholecystokinin) and orexigen (neuropeptide Y) plasma levels in peritoneal dialysis (PD) patients: their relationship with nutritional parameters. Nephrol. Dial. Transplant. 13, 1476–1483 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Mak, R. H., Cheung, W., Cone, R. D. & Marks, D. L. Leptin and inflammation-associated cachexia in chronic kidney disease. Kidney Int. 69, 794–797 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Carrero, J. J. et al. Visfatin is increased in chronic kidney disease patients with poor appetite and correlates negatively with fasting serum amino acids and triglyceride levels. Nephrol. Dial. Transplant. 25, 901–906 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Price, S. R. et al. Muscle wasting in insulinopenic rats results from activation of the ATP-dependent, ubiquitin-proteasome proteolytic pathway by a mechanism including gene transcription. J. Clin. Invest. 98, 1703–1708 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wellen, K. E. & Hotamisligil, G. S. Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111–1119 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, S. W., Park, G. H., Song, J. H., Hong, K. C. & Kim, M. J. Insulin resistance and muscle wasting in non-diabetic end-stage renal disease patients. Nephrol. Dial. Transplant. 22, 2554–2562 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Bayraktar, G. et al. Oral health and inflammation in patients with end-stage renal failure. Perit. Dial. Int. 29, 472–479 (2009).

    CAS  PubMed  Google Scholar 

  28. Cheng, L. T., Tang, W. & Wang, T. Strong association between volume status and nutritional status in peritoneal dialysis patients. Am. J. Kidney Dis. 45, 891–902 (2005).

    Article  PubMed  Google Scholar 

  29. Lai, K. N. & Leung, J. C. Inflammation in peritoneal dialysis. Nephron Clin. Pract. 116, c11–c18 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Clinical practice guidelines for nutrition in chronic renal failure. K/DOQI, National Kidney Foundation. Am. J. Kidney Dis. 35 (Suppl. 2), S1–140 (2000).

  31. Wang, A. Y. et al. Nutrient intake during peritoneal dialysis at the Prince of Wales Hospital in Hong Kong. Am. J. Kidney Dis. 49, 682–692 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Lindholm, B., Wang, T., Heimburger, O. & Bergstrom, J. Influence of different treatments and schedules on the factors conditioning the nutritional status in dialysis patients. Nephrol. Dial. Transplant. 13 (Suppl. 6), 66–73 (1998).

    Article  PubMed  Google Scholar 

  33. Bazanelli, A. P. et al. Resting energy expenditure in peritoneal dialysis patients. Perit. Dial. Int. 26, 697–704 (2006).

    PubMed  Google Scholar 

  34. Bergstrom, J., Furst, P., Alvestrand, A. & Lindholm, B. Protein and energy intake, nitrogen balance and nitrogen losses in patients treated with continuous ambulatory peritoneal dialysis. Kidney Int. 44, 1048–1057 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Carrero, J. J. et al. Appetite disorders in uremia. J. Ren. Nutr. 18, 107–113 (2008).

    Article  PubMed  Google Scholar 

  36. Aguilera, A. et al. Gastrointestinal and pancreatic function in peritoneal dialysis patients: their relationship with malnutrition and peritoneal membrane abnormalities. Am. J. Kidney Dis. 42, 787–796 (2003).

    Article  PubMed  Google Scholar 

  37. Kalantar-Zadeh, K., Ikizler, T. A., Block, G., Avram, M. M. & Kopple, J. D. Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences. Am. J. Kidney Dis. 42, 864–881 (2003).

    Article  PubMed  Google Scholar 

  38. Zheng, Z. H. et al. Acute effects of peritoneal dialysis solutions on appetite in non-uremic rats. Kidney Int. 60, 2392–2398 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Stompor, T. et al. Association between gastric emptying rate and nutritional status in patients treated with continuous ambulatory peritoneal dialysis. Perit. Dial. Int. 22, 500–505 (2002).

    PubMed  Google Scholar 

  40. Van, V. et al. Influence of dialysate on gastric emptying time in peritoneal dialysis patients. Perit. Dial. Int. 22, 32–38 (2002).

    PubMed  Google Scholar 

  41. Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Perez-Fontan, M. et al. Plasma ghrelin levels in patients undergoing haemodialysis and peritoneal dialysis. Nephrol. Dial. Transplant. 19, 2095–2100 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Aguilera, A. et al. Ghrelin plasma levels and appetite in peritoneal dialysis patients. Adv. Perit. Dial. 20, 194–199 (2004).

    CAS  PubMed  Google Scholar 

  44. Perez-Fontan, M. et al. Acute plasma ghrelin and leptin responses to oral feeding or intraperitoneal hypertonic glucose-based dialysate in patients with chronic renal failure. Kidney Int. 68, 2877–2885 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Zheng, Z. H. et al. Bicarbonate-based peritoneal dialysis solution has less effect on ingestive behavior than lactate-based peritoneal dialysis solution. Perit. Dial. Int. 29, 656–663 (2009).

    CAS  PubMed  Google Scholar 

  46. Blumenkrantz, M. J. et al. Protein losses during peritoneal dialysis. Kidney Int. 19, 593–602 (1981).

    Article  CAS  PubMed  Google Scholar 

  47. Kathuria, P. et al. Effect of dialysis modality and membrane transport characteristics on dialysate protein losses of patients on peritoneal dialysis. Perit. Dial. Int. 17, 449–454 (1997).

    CAS  PubMed  Google Scholar 

  48. Kang, D. H. et al. Relationship of peritoneal membrane transport characteristics to the nutritional status in CAPD patients. Nephrol. Dial. Transplant. 14, 1715–1722 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Pecoits-Filho, R. et al. Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol. Dial. Transplant. 17, 1480–1486 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Churchill, D. N. et al. Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. The Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J. Am. Soc. Nephrol. 9, 1285–1292 (1998).

    CAS  PubMed  Google Scholar 

  51. Rumpsfeld, M., McDonald, S. P. & Johnson, D. W. Higher peritoneal transport status is associated with higher mortality and technique failure in the Australian and New Zealand peritoneal dialysis patient populations. J. Am. Soc. Nephrol. 17, 271–278 (2006).

    Article  PubMed  Google Scholar 

  52. Cueto-Manzano, A. M., Espinosa, A., Hernandez, A. & Correa-Rotter, R. Peritoneal transport kinetics correlate with serum albumin but not with the overall nutritional status in CAPD patients. Am. J. Kidney Dis. 30, 229–236 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Szeto, C. C., Law, M. C., Wong, T. Y., Leung, C. B. & Li, P. K. Peritoneal transport status correlates with morbidity but not longitudinal change of nutritional status of continuous ambulatory peritoneal dialysis patients: a 2-year prospective study. Am. J. Kidney Dis. 37, 329–336 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Brimble, K. S., Walker, M., Margetts, P. J., Kundhal, K. K. & Rabbat, C. G. Meta-analysis: peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J. Am. Soc. Nephrol. 17, 2591–2598 (2006).

    Article  PubMed  Google Scholar 

  55. Johnson, D. W. et al. Superior survival of high transporters treated with automated versus continuous ambulatory peritoneal dialysis. Nephrol. Dial. Transplant. 25, 1973–1979 (2010).

    Article  PubMed  Google Scholar 

  56. Chung, S. H., Heimburger, O. & Lindholm, B. Poor outcomes for fast transporters on PD: the rise and fall of a clinical concern. Semin. Dial. 21, 7–10 (2008).

    Article  PubMed  Google Scholar 

  57. Shemin, D., Bostom, A. G., Laliberty, P. & Dworkin, L. D. Residual renal function and mortality risk in hemodialysis patients. Am. J. Kidney Dis. 38, 85–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, A. Y. et al. Resting energy expenditure and subsequent mortality risk in peritoneal dialysis patients. J. Am. Soc. Nephrol. 15, 3134–3143 (2004).

    Article  PubMed  Google Scholar 

  59. Szeto, C. C. et al. Independent effects of residual renal function and dialysis adequacy on nutritional status and patient outcome in continuous ambulatory peritoneal dialysis. Am. J. Kidney Dis. 34, 1056–1064 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Suda, T. et al. The contribution of residual renal function to overall nutritional status in chronic haemodialysis patients. Nephrol. Dial. Transplant. 15, 396–401 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, A. Y. et al. Evaluation of handgrip strength as a nutritional marker and prognostic indicator in peritoneal dialysis patients. Am. J. Clin. Nutr. 81, 79–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Pecoits-Filho, R. et al. Associations between circulating inflammatory markers and residual renal function in CRF patients. Am. J. Kidney Dis. 41, 1212–1218 (2003).

    Article  PubMed  Google Scholar 

  63. Bammens, B., Evenepoel, P., Verbeke, K. & Vanrenterghem, Y. Time profiles of peritoneal and renal clearances of different uremic solutes in incident peritoneal dialysis patients. Am. J. Kidney Dis. 46, 512–519 (2005).

    Article  PubMed  Google Scholar 

  64. Marcus, R. G., Cohl, E. & Uribarri, J. Middle molecule clearance does not influence protein intake in hemodialysis patients. Am. J. Kidney Dis. 31, 491–494 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Bailey, J. L. et al. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway. J. Clin. Invest. 97, 1447–1453 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ballmer, P. E. et al. Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J. Clin. Invest. 95, 39–45 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brungger, M., Hulter, H. N. & Krapf, R. Effect of chronic metabolic acidosis on the growth hormone/IGF-1 endocrine axis: new cause of growth hormone insensitivity in humans. Kidney Int. 51, 216–221 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Chiu, Y. W., Kopple, J. D. & Mehrotra, R. Correction of metabolic acidosis to ameliorate wasting in chronic kidney disease: goals and strategies. Semin. Nephrol. 29, 67–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Kang, S. W. et al. Impact of metabolic acidosis on serum albumin and other nutritional parameters in long-term CAPD patients. Adv. Perit. Dial. 13, 249–252 (1997).

    CAS  PubMed  Google Scholar 

  70. Kang, D. H. et al. Metabolic acidosis and composite nutritional index (CNI) in CAPD patients. Clin. Nephrol. 53, 124–131 (2000).

    CAS  PubMed  Google Scholar 

  71. Blake, P. G. Growth hormone and malnutrition in dialysis patients. Perit. Dial. Int. 15, 210–216 (1995).

    CAS  PubMed  Google Scholar 

  72. Fryburg, D. A., Gelfand, R. A. & Barrett, E. J. Growth hormone acutely stimulates forearm muscle protein synthesis in normal humans. Am. J. Physiol. 260, E499–E504 (1991).

    CAS  PubMed  Google Scholar 

  73. Spiegel, D. M. & Breyer, J. A. Serum albumin: a predictor of long-term outcome in peritoneal dialysis patients. Am. J. Kidney Dis. 23, 283–285 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Han, S. H. et al. Improving outcome of CAPD: twenty-five years' experience in a single Korean center. Perit. Dial. Int. 27, 432–440 (2007).

    PubMed  Google Scholar 

  75. Han, D. S. et al. Factors affecting low values of serum albumin in CAPD patients. Adv. Perit. Dial. 12, 288–292 (1996).

    CAS  PubMed  Google Scholar 

  76. Goldwasser, P., Feldman, J. G. & Barth, R. H. Serum prealbumin is higher in peritoneal dialysis than in hemodialysis: a meta-analysis. Kidney Int. 62, 276–281 (2002).

    Article  PubMed  Google Scholar 

  77. Kalantar-Zadeh, K. & Kopple, J. D. Obesity paradox in patients on maintenance dialysis. Contrib. Nephrol. 151, 57–69 (2006).

    Article  PubMed  Google Scholar 

  78. Snyder, J. J., Foley, R. N., Gilbertson, D. T., Vonesh, E. F. & Collins, A. J. Body size and outcomes on peritoneal dialysis in the United States. Kidney Int. 64, 1838–1844 (2003).

    Article  PubMed  Google Scholar 

  79. Stack, A. G., Murthy, B. V. & Molony, D. A. Survival differences between peritoneal dialysis and hemodialysis among “large” ESRD patients in the United States. Kidney Int. 65, 2398–2408 (2004).

    Article  PubMed  Google Scholar 

  80. Enia, G. et al. Long-term CAPD patients are volume expanded and display more severe left ventricular hypertrophy than haemodialysis patients. Nephrol. Dial. Transplant. 16, 1459–1464 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Abbott, K. C. et al. Body mass index and peritoneal dialysis: “exceptions to the exception” in reverse epidemiology? Semin. Dial. 20, 561–565 (2007).

    Article  PubMed  Google Scholar 

  82. McDonald, S. P., Collins, J. F. & Johnson, D. W. Obesity is associated with worse peritoneal dialysis outcomes in the Australia and New Zealand patient populations. J. Am. Soc. Nephrol. 14, 2894–2901 (2003).

    Article  PubMed  Google Scholar 

  83. Honda, H. et al. Obese sarcopenia in patients with end-stage renal disease is associated with inflammation and increased mortality. Am. J. Clin. Nutr. 86, 633–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Ramkumar, N., Pappas, L. M. & Beddhu, S. Effect of body size and body composition on survival in peritoneal dialysis patients. Perit. Dial. Int. 25, 461–469 (2005).

    PubMed  Google Scholar 

  85. Bargman, J. M. The rationale and ultimate limitations of urea kinetic modelling in the estimation of nutritional status. Perit. Dial. Int. 16, 347–351 (1996).

    CAS  PubMed  Google Scholar 

  86. Bazanelli, A. P., Kamimura, M. A., Vasselai, P., Draibe, S. A. & Cuppari, L. Underreporting of energy intake in peritoneal dialysis patients. J. Ren. Nutr. 20, 263–269 (2010).

    Article  PubMed  Google Scholar 

  87. Bergstrom, J. Mechanisms of uremic suppression of appetite. J. Ren. Nutr. 9, 129–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Fung, L. et al. Dialysis adequacy and nutrition determine prognosis in continuous ambulatory peritoneal dialysis patients. J. Am. Soc. Nephrol. 7, 737–744 (1996).

    CAS  PubMed  Google Scholar 

  89. Williams, P., Jones, J. & Marriott, J. Do increases in dialysis dose in CAPD patients lead to nutritional improvements? Nephrol. Dial. Transplant. 9, 1841–1842 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Lynn, R. I., Fishbane, S. & Ginsberg, N. S. The effect of KT/V(urea) on nitrogen appearance and appetite in peritoneal dialysis. Perit. Dial. Int. 15 (Suppl. 5), S50–S52 (1995).

    CAS  PubMed  Google Scholar 

  91. Malhotra, D. et al. Serum albumin in continuous peritoneal dialysis: its predictors and relationship to urea clearance. Kidney Int. 50, 243–249 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Harty, J., Boulton, H., Faragher, B., Venning, M. & Gokal, R. The influence of small solute clearance on dietary protein intake in continuous ambulatory peritoneal dialysis patients: a methodologic analysis based on cross-sectional and prospective studies. Am. J. Kidney Dis. 28, 553–560 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Davies, S. J., Phillips, L., Griffiths, A. M., Naish, P. F. & Russell, G. I. Analysis of the effects of increasing delivered dialysis treatment to malnourished peritoneal dialysis patients. Kidney Int. 57, 1743–1754 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Paniagua, R. et al. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J. Am. Soc. Nephrol. 13, 1307–1320 (2002).

    CAS  PubMed  Google Scholar 

  95. Lo, W. K. et al. Effect of Kt/V on survival and clinical outcome in CAPD patients in a randomized prospective study. Kidney Int. 64, 649–656 (2003).

    Article  PubMed  Google Scholar 

  96. Mak, S. K. et al. Randomized prospective study of the effect of increased dialytic dose on nutritional and clinical outcome in continuous ambulatory peritoneal dialysis patients. Am. J. Kidney Dis. 36, 105–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Nolph, K. D. et al. A new approach to optimizing urea clearances in hemodialysis and continuous ambulatory peritoneal dialysis. ASAIO J. 41, M446–M451 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Ronco, C. Adequacy of peritoneal dialysis is more than Kt/V. Nephrol. Dial. Transplant. 12 (Suppl. 1), 68–73 (1997).

    PubMed  Google Scholar 

  99. Oreopoulos, D. G. The optimization of continuous ambulatory peritoneal dialysis. Kidney Int. 55, 1131–1149 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Kawanishi, H., Moriishi, M. & Tsuchiya, S. Evaluation of dialysis dose during combination therapy with peritoneal dialysis and hemodialysis. Adv. Perit. Dial. 23, 135–139 (2007).

    CAS  PubMed  Google Scholar 

  101. Bargman, J. M., Thorpe, K. E. & Churchill, D. N. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J. Am. Soc. Nephrol. 12, 2158–2162 (2001).

    CAS  PubMed  Google Scholar 

  102. Wang, A. Y. et al. Important factors other than dialysis adequacy associated with inadequate dietary protein and energy intakes in patients receiving maintenance peritoneal dialysis. Am. J. Clin. Nutr. 77, 834–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Prasad, N. et al. Changes in nutritional status on follow-up of an incident cohort of continuous ambulatory peritoneal dialysis patients. J. Ren. Nutr. 18, 195–201 (2008).

    Article  PubMed  Google Scholar 

  104. Martin-Del-Campo, F. et al. Conventional nutritional counselling maintains nutritional status of patients on continuous ambulatory peritoneal dialysis in spite of systemic inflammation and decrease of residual renal function. Nephrology (Carlton) 14, 493–498 (2009).

    Article  CAS  Google Scholar 

  105. Sutton, D., Higgins, B. & Stevens, J. M. Continuous ambulatory peritoneal dialysis patients are unable to increase dietary intake to recommended levels. J. Ren. Nutr. 17, 329–335 (2007).

    Article  PubMed  Google Scholar 

  106. Dombros, N. et al. European best practice guidelines for peritoneal dialysis. 8 Nutrition in peritoneal dialysis. Nephrol. Dial. Transplant. 20 (Suppl. 9), ix28–ix33 (2005).

    PubMed  Google Scholar 

  107. Blumenkrantz, M. J., Kopple, J. D., Moran, J. K. & Coburn, J. W. Metabolic balance studies and dietary protein requirements in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int. 21, 849–861 (1982).

    Article  CAS  PubMed  Google Scholar 

  108. Fouque, D., Pelletier, S., Mafra, D. & Chauveau, P. Nutrition and chronic kidney disease. Kidney Int. 80, 348–357 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Shimomura, A., Tahara, D. & Azekura, H. Nutritional improvement in elderly CAPD patients with additional high protein foods. Adv. Perit. Dial. 9, 80–86 (1993).

    CAS  PubMed  Google Scholar 

  110. Heaf, J. G., Honore, K., Valeur, D. & Randlov, A. The effect of oral protein supplements on the nutritional status of malnourished CAPD patients. Perit. Dial. Int. 19, 78–81 (1999).

    CAS  PubMed  Google Scholar 

  111. Eustace, J. A. et al. Randomized double-blind trial of oral essential amino acids for dialysis-associated hypoalbuminemia. Kidney Int. 57, 2527–2538 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Aguirre Galindo, B. A. et al. Effect of polymeric diets in patients on continuous ambulatory peritoneal dialysis. Perit. Dial. Int. 23, 434–439 (2003).

    PubMed  Google Scholar 

  113. Boudville, N., Rangan, A. & Moody, H. Oral nutritional supplementation increases caloric and protein intake in peritoneal dialysis patients. Am. J. Kidney Dis. 41, 658–663 (2003).

    Article  PubMed  Google Scholar 

  114. Teixido-Planas, J. et al. Oral protein-energy supplements in peritoneal dialysis: a multicenter study. Perit. Dial. Int. 25, 163–172 (2005).

    CAS  PubMed  Google Scholar 

  115. Gonzalez-Espinoza, L. et al. Randomized, open label, controlled clinical trial of oral administration of an egg albumin-based protein supplement to patients on continuous ambulatory peritoneal dialysis. Perit. Dial. Int. 25, 173–180 (2005).

    CAS  PubMed  Google Scholar 

  116. Poole, R. & Hamad, A. Nutrition supplements in dialysis patients: use in peritoneal dialysis patients and diabetic patients. Adv. Perit. Dial. 24, 118–124 (2008).

    CAS  PubMed  Google Scholar 

  117. Moretti, H. D., Johnson, A. M. & Keeling-Hathaway, T. J. Effects of protein supplementation in chronic hemodialysis and peritoneal dialysis patients. J. Ren. Nutr. 19, 298–303 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Inui, A. Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer J. Clin. 52, 72–91 (2002).

    Article  PubMed  Google Scholar 

  119. Lien, Y. H. & Ruffenach, S. J. Low dose megestrol increases serum albumin in malnourished dialysis patients. Int. J. Artif. Organs 19, 147–150 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Costero, O. et al. Treatment of anorexia and malnutrition in peritoneal dialysis patients with megestrol acetate. Adv. Perit. Dial. 20, 209–212 (2004).

    CAS  PubMed  Google Scholar 

  121. Golebiewska, J. et al. Influence of megestrol acetate on nutrition and inflammation in dialysis patients - preliminary results. Acta Biochim. Pol. 56, 733–737 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Boccanfuso, J. A., Hutton, M. & McAllister, B. The effects of megestrol acetate on nutritional parameters in a dialysis population. J. Ren. Nutr. 10, 36–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Park, M. S. et al. Peritoneal transport during dialysis with amino acid-based solutions. Perit. Dial. Int. 13, 280–288 (1993).

    CAS  PubMed  Google Scholar 

  124. Garibotto, G. et al. Acute effects of peritoneal dialysis with dialysates containing dextrose or dextrose and amino acids on muscle protein turnover in patients with chronic renal failure. J. Am. Soc. Nephrol. 12, 557–567 (2001).

    CAS  PubMed  Google Scholar 

  125. Bruno, M. et al. CAPD with an amino acid dialysis solution: a long-term, cross-over study. Kidney Int. 35, 1189–1194 (1989).

    Article  CAS  PubMed  Google Scholar 

  126. Arfeen, S., Goodship, T. H., Kirkwood, A. & Ward, M. K. The nutritional/metabolic and hormonal effects of 8 weeks of continuous ambulatory peritoneal dialysis with a 1% amino acid solution. Clin. Nephrol. 33, 192–199 (1990).

    CAS  PubMed  Google Scholar 

  127. Kopple, J. D. et al. Treatment of malnourished CAPD patients with an amino acid based dialysate. Kidney Int. 47, 1148–1157 (1995).

    Article  CAS  PubMed  Google Scholar 

  128. Faller, B. et al. Clinical evaluation of an optimized 1.1% amino-acid solution for peritoneal dialysis. Nephrol. Dial. Transplant. 10, 1432–1437 (1995).

    CAS  PubMed  Google Scholar 

  129. Chertow, G. M. et al. Laboratory surrogates of nutritional status after administration of intraperitoneal amino acid-based solutions in ambulatory peritoneal dialysis patients. J. Ren. Nutr. 3, 116–123 (1995).

    Article  Google Scholar 

  130. Misra, M., Ashworth, J., Reaveley, D. A., Muller, B. & Brown, E. A. Nutritional effects of amino acid dialysate (Nutrineal) in CAPD patients. Adv. Perit. Dial. 12, 311–314 (1996).

    CAS  PubMed  Google Scholar 

  131. Jones, M. et al. Treatment of malnutrition with 1.1% amino acid peritoneal dialysis solution: results of a multicenter outpatient study. Am. J. Kidney Dis. 32, 761–769 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Taylor, G. S., Patel, V., Spencer, S., Fluck, R. J. & McIntyre, C. W. Long-term use of 1.1% amino acid dialysis solution in hypoalbuminemic continuous ambulatory peritoneal dialysis patients. Clin. Nephrol. 58, 445–450 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Li, F. K. et al. A 3-year, prospective, randomized, controlled study on amino acid dialysate in patients on CAPD. Am. J. Kidney Dis. 42, 173–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Park, M. S. et al. New insight of amino acid-based dialysis solutions. Kidney Int. Suppl. 103, S110–S114 (2006).

    Article  CAS  Google Scholar 

  135. Young, G. A. et al. The use of an amino-acid-based CAPD fluid over 12 weeks. Nephrol. Dial. Transplant. 4, 285–292 (1989).

    Article  CAS  PubMed  Google Scholar 

  136. Dombros, N. V. et al. Six-month overnight intraperitoneal amino-acid infusion in continuous ambulatory peritoneal dialysis (CAPD) patients—no effect on nutritional status. Perit. Dial. Int. 10, 79–84 (1990).

    CAS  PubMed  Google Scholar 

  137. Dibble, J. B., Young, G. A., Hobson, S. M. & Brownjohn, A. M. Amino-acid-based continuous ambulatory peritoneal dialysis (CAPD) fluid over twelve weeks: effects on carbohydrate and lipid metabolism. Perit. Dial. Int. 10, 71–77 (1990).

    CAS  PubMed  Google Scholar 

  138. Maurer, O. et al. Six-month overnight administration of intraperitoneal amino acids does not improve lean mass. Clin. Nephrol. 45, 303–309 (1996).

    PubMed  Google Scholar 

  139. Grzegorzewska, A. E., Mariak, I., Dobrowolska-Zachwieja, A. & Szajdak, L. Effects of amino acid dialysis solution on the nutrition of continuous ambulatory peritoneal dialysis patients. Perit. Dial. Int. 19, 462–470 (1999).

    CAS  PubMed  Google Scholar 

  140. Tjiong, H. L. et al. Dialysate as food: combined amino acid and glucose dialysate improves protein anabolism in renal failure patients on automated peritoneal dialysis. J. Am. Soc. Nephrol. 16, 1486–1493 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Fouque, D., Guebre-Egziabher, F. & Laville, M. Advances in anabolic interventions for malnourished dialysis patients. J. Ren. Nutr. 13, 161–165 (2003).

    Article  PubMed  Google Scholar 

  142. Ikizler, T. A. et al. Short-term effects of recombinant human growth hormone in CAPD patients. Kidney Int. 46, 1178–1183 (1994).

    Article  CAS  PubMed  Google Scholar 

  143. Kang, D. H. et al. Recombinant human growth hormone improved nutritional status of undernourished adult CAPD patients. J. Am. Soc. Nephrol. 5, 494 (1994).

    Google Scholar 

  144. Ikizler, T. A. et al. Effects of recombinant human growth hormone on plasma and dialysate amino acid profiles in CAPD patients. Kidney Int. 50, 229–234 (1996).

    Article  CAS  PubMed  Google Scholar 

  145. Iglesias, P. et al. Recombinant human growth hormone therapy in malnourished dialysis patients: a randomized controlled study. Am. J. Kidney Dis. 32, 454–463 (1998).

    Article  CAS  PubMed  Google Scholar 

  146. Fouque, D., Peng, S. C., Shamir, E. & Kopple, J. D. Recombinant human insulin-like growth factor-1 induces an anabolic response in malnourished CAPD patients. Kidney Int. 57, 646–654 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Dombros, N. V., Digenis, G. E., Soliman, G. & Oreopoulos, D. G. Anabolic steroids in the treatment of malnourished CAPD patients: a retrospective study. Perit. Dial. Int. 14, 344–347 (1994).

    CAS  PubMed  Google Scholar 

  148. Johansen, K. L., Mulligan, K. & Schambelan, M. Anabolic effects of nandrolone decanoate in patients receiving dialysis: a randomized controlled trial. JAMA 281, 1275–1281 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Navarro, J. F., Mora, C., Macia, M. & Garcia, J. Randomized prospective comparison between erythropoietin and androgens in CAPD patients. Kidney Int. 61, 1537–1544 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Aramwit, P., Palapinyo, S., Wiwatniwong, S. & Supasyndh, O. The efficacy of oxymetholone in combination with erythropoietin on hematologic parameters and muscle mass in CAPD patients. Int. J. Clin. Pharmacol. Ther. 48, 803–813 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Wren, A. M. et al. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86, 5992 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Wynne, K. et al. Subcutaneous ghrelin enhances acute food intake in malnourished patients who receive maintenance peritoneal dialysis: a randomized, placebo-controlled trial. J. Am. Soc. Nephrol. 16, 2111–2118 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Ashby, D. R. et al. Sustained appetite improvement in malnourished dialysis patients by daily ghrelin treatment. Kidney Int. 76, 199–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Graham, K. A. et al. Correction of acidosis in CAPD decreases whole body protein degradation. Kidney Int. 49, 1396–1400 (1996).

    Article  CAS  PubMed  Google Scholar 

  155. Stein, A. et al. Role of an improvement in acid-base status and nutrition in CAPD patients. Kidney Int. 52, 1089–1095 (1997).

    Article  CAS  PubMed  Google Scholar 

  156. Pickering, W. P. et al. Nutrition in CAPD: serum bicarbonate and the ubiquitin-proteasome system in muscle. Kidney Int. 61, 1286–1292 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Szeto, C. C., Wong, T. Y., Chow, K. M., Leung, C. B. & Li, P. K. Oral sodium bicarbonate for the treatment of metabolic acidosis in peritoneal dialysis patients: a randomized placebo-control trial. J. Am. Soc. Nephrol. 14, 2119–2126 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Montenegro, J. et al. Long-term clinical experience with pure bicarbonate peritoneal dialysis solutions. Perit. Dial. Int. 26, 89–94 (2006).

    CAS  PubMed  Google Scholar 

  159. Mehrotra, R. et al. Effect of high-normal compared with low-normal arterial pH on protein balances in automated peritoneal dialysis patients. Am. J. Clin. Nutr. 90, 1532–1540 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Dae-Suk Han.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, SH., Han, DS. Nutrition in patients on peritoneal dialysis. Nat Rev Nephrol 8, 163–175 (2012). https://doi.org/10.1038/nrneph.2012.12

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.12

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing