Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The renaissance of corticotropin therapy in proteinuric nephropathies

Abstract

Refractory nephrotic syndrome continues to be a therapeutic challenge despite advances in immunosuppression and blockade of the renin–angiotensin–aldosterone cascade. Adrenocorticotropic hormone (ACTH), a pituitary neuroimmunoendocrine polypeptide, was widely used in the 1950s as an effective therapy for childhood nephrotic syndrome, but has since been replaced by synthetic glucocorticoid analogues. In addition to controlling steroidogenesis, ACTH also acts as an important physiological agonist of the melanocortin system. Clinical and experimental evidence now suggests that ACTH has antiproteinuric, lipid-lowering and renoprotective properties, which are not fully explained by its steroidogenic effects. ACTH therapy is effective in inducing remission of nephrotic syndrome in patients with a variety of proteinuric nephropathies, even those resistant to steroids and other immunosuppressants. This Perspectives article describes the biophysiology of ACTH, with an emphasis on its melanocortin actions, particularly in renal parenchymal cells, which could potentially explain the therapeutic effects of ACTH in nephrotic glomerulopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthesis of ACTH and its regulation by the HPA axis.
Figure 2: Expression of melanocortin receptors in podocytes.
Figure 3: Potential mechanisms underlying the therapeutic efficacy of ACTH in proteinuric nephropathies.

Similar content being viewed by others

References

  1. Dores, R. M. Adrenocorticotropic hormone, melanocyte-stimulating hormone, and the melanocortin receptors: revisiting the work of Robert Schwyzer: a thirty-year retrospective. Ann. NY Acad. Sci. 1163, 93–100 (2009).

    Article  CAS  Google Scholar 

  2. Arneil, G. C. & Wilson, H. E. A.C.T.H. in nephrosis. Arch. Dis. Child. 28, 372–380 (1953).

    Article  CAS  Google Scholar 

  3. Piel, C. F. Management of nephrosis; the use of long continued hormone therapy. Calif. Med. 85, 152–156 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lauson, H. D., Forman, C. W., Mc, N. H., Mattar, G. & Barnett, H. L. The effect of corticotropin (ACTH) on glomerular permeability to albumin in children with the nephrotic syndrome. J. Clin. Invest. 33, 657–664 (1954).

    Article  CAS  Google Scholar 

  5. Berg, A. L. & Arnadottir, M. ACTH revisited--potential implications for patients with renal disease. Nephrol. Dial. Transplant. 15, 940–942 (2000).

    Article  CAS  Google Scholar 

  6. Ponticelli, C. Membranous nephropathy. J. Nephrol. 20, 268–287 (2007).

    CAS  PubMed  Google Scholar 

  7. Cone, R. D. Studies on the physiological functions of the melanocortin system. Endocr. Rev. 27, 736–749 (2006).

    Article  CAS  Google Scholar 

  8. Voisey, J., Carroll, L. & van Daal, A. Melanocortins and their receptors and antagonists. Curr. Drug Targets 4, 586–597 (2003).

    Article  CAS  Google Scholar 

  9. Penhoat, A., Naville, D. & Begeot, M. The adrenocorticotropic hormone receptor. Curr. Opin. Endocrinol. Diabetes 8, 112–117 (2001).

    Article  CAS  Google Scholar 

  10. Lindskog, A. et al. Melanocortin 1 receptor agonists reduce proteinuria. J. Am. Soc. Nephrol. 21, 1290–1298 (2010).

    Article  CAS  Google Scholar 

  11. Gong, R. & Dworkin, L. D. ACTH (Acthar Gel) prevents proteinuria and renal injury in the remnant kidney: Evidence for direct podocyte protection. J. Am. Soc. Nephrol. 21, 548A (2010).

    Article  Google Scholar 

  12. Chhajlani, V. Distribution of cDNA for melanocortin receptor subtypes in human tissues. Biochem. Mol. Biol. Int. 38, 73–80 (1996).

    CAS  PubMed  Google Scholar 

  13. Sanchez, E., Rubio, V. C. & Cerda-Reverter, J. M. Characterization of the sea bass melanocortin 5 receptor: a putative role in hepatic lipid metabolism. J. Exp. Biol. 212, 3901–3910 (2009).

    Article  CAS  Google Scholar 

  14. Ni, X. P., Bhargava, A., Pearce, D. & Humphreys, M. H. Modulation by dietary sodium intake of melanocortin 3 receptor mRNA and protein abundance in the rat kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R560–R567 (2006).

    Article  CAS  Google Scholar 

  15. Lee, Y. S., Park, J. J. & Chung, K. Y. Change of melanocortin receptor expression in rat kidney ischemia-reperfusion injury. Transplant. Proc. 40, 2142–2144 (2008).

    Article  CAS  Google Scholar 

  16. Schwandt, P. & Richter, W. O. Effects of pituitary peptides on fat mobilisation. Int. J. Obes. 6 (Suppl. 1), 49–54 (1982).

    CAS  PubMed  Google Scholar 

  17. Berg, A. L., Hansson, P. & Nilsson-Ehle, P. ACTH 1–24 decreases hepatic lipase activities and low density lipoprotein concentrations in healthy men. J. Intern. Med. 229, 201–203 (1991).

    Article  CAS  Google Scholar 

  18. Berg, A. L. & Nilsson-Ehle, P. ACTH lowers serum lipids in steroid-treated hyperlipemic patients with kidney disease. Kidney Int. 50, 538–542 (1996).

    Article  CAS  Google Scholar 

  19. Beloff-Chain, A., Morton, J., Dunmore, S., Taylor, G. W. & Morris, H. R. Evidence that the insulin secretagogue, beta-cell-tropin, is ACTH22–39. Nature 301, 255–258 (1983).

    Article  CAS  Google Scholar 

  20. Schoneshofer, M. & Goverde, H. J. Corticotropin in human plasma. General considerations. Surv. Immunol. Res. 3, 55–63 (1984).

    CAS  PubMed  Google Scholar 

  21. Wan, L., Chen, Y. H. & Chang, T. W. Improving pharmacokinetic properties of adrenocorticotropin by site-specific lipid modification. J. Pharm. Sci. 92, 1882–1892 (2003).

    Article  CAS  Google Scholar 

  22. Kohda, Y., Chiao, H. & Star, R. A. alpha-Melanocyte-stimulating hormone and acute renal failure. Curr. Opin. Nephrol. Hypertens. 7, 413–417 (1998).

    Article  CAS  Google Scholar 

  23. Chiao, H. et al. Alpha-melanocyte-stimulating hormone protects against renal injury after ischemia in mice and rats. J. Clin. Invest. 99, 1165–1172 (1997).

    Article  CAS  Google Scholar 

  24. Kolgazi, M., Arbak, S. & Alican, I. The effect of alpha-melanocyte stimulating hormone on gentamicin-induced acute nephrotoxicity in rats. J. Appl. Toxicol. 27, 183–188 (2007).

    Article  CAS  Google Scholar 

  25. Li, C. et al. alpha-MSH prevents impairment in renal function and dysregulation of AQPs and Na-K-ATPase in rats with bilateral ureteral obstruction. Am. J. Physiol. Renal. Physiol. 290, F384–F396 (2006).

    Article  CAS  Google Scholar 

  26. Gong, R., Ge, Y., Tolbert, E. M., Zhuang, S. & Dworkin, L. D. Renoprotection by adrenocorticotropin in experimental acute kidney injury. J. Am. Soc. Nephrol. 20, 510A (2009).

    Article  Google Scholar 

  27. Garcia, D. L., Rennke, H. G., Brenner, B. M. & Anderson, S. Chronic glucocorticoid therapy amplifies glomerular injury in rats with renal ablation. J. Clin. Invest. 80, 867–874 (1987).

    Article  CAS  Google Scholar 

  28. Berg, A. L. & Arnadottir, M. ACTH-induced improvement in the nephrotic syndrome in patients with a variety of diagnoses. Nephrol. Dial. Transplant. 19, 1305–1307 (2004).

    Article  CAS  Google Scholar 

  29. Berg, A. L., Nilsson-Ehle, P. & Arnadottir, M. Beneficial effects of ACTH on the serum lipoprotein profile and glomerular function in patients with membranous nephropathy. Kidney Int. 56, 1534–1543 (1999).

    Article  CAS  Google Scholar 

  30. Ponticelli, C. et al. A randomized pilot trial comparing methylprednisolone plus a cytotoxic agent versus synthetic adrenocorticotropic hormone in idiopathic membranous nephropathy. Am. J. Kidney Dis. 47, 233–240 (2006).

    Article  CAS  Google Scholar 

  31. Rauen, T., Michaelis, A., Floege, J. & Mertens, P. R. Case series of idiopathic membranous nephropathy with long-term beneficial effects of ACTH peptide 1–24. Clin. Nephrol. 71, 637–642 (2009).

    Article  CAS  Google Scholar 

  32. Picardi, L. et al. ACTH therapy in nephrotic syndrome induced by idiopathic membranous nephropathy. Clin. Nephrol. 62, 403–404 (2004).

    Article  CAS  Google Scholar 

  33. Bomback, A. S. et al. Treatment of resistant nephrotic syndrome with adrenocorticotropic hormone (ACTH) gel. Drug Des. Develop. Ther. 5, 147–153 (2011).

    Article  CAS  Google Scholar 

  34. Beck, L. H. et al. Treatment of idiopathic membranous nephropathy with ACTH is associated with a decline in anti-PLA2R antibody. J. Am. Soc. Nephrol. 20, 306A (2009).

    Article  Google Scholar 

  35. Beck, L. H. Jr et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    Article  CAS  Google Scholar 

  36. Rosenblum, A. H. & Rosenblum, P. Anaphylactic reactions to adrenocorticotropic hormone in children. J. Pediatr. 64, 387–395 (1964).

    Article  CAS  Google Scholar 

  37. Glassock, R. J. The treatment of idiopathic membranous nephropathy: a dilemma or a conundrum? Am. J. Kidney Dis. 44, 562–566 (2004).

    Article  Google Scholar 

  38. Catania, A. The melanocortin system in leukocyte biology. J. Leukoc. Biol. 81, 383–392 (2007).

    Article  CAS  Google Scholar 

  39. Symmers, W. S. Thrombotic microangiopathic haemolytic anaemia (thrombotic microangiopathy). Br. Med. J. 2, 897–903 (1952).

    Article  CAS  Google Scholar 

  40. Catania, A., Gatti, S., Colombo, G. & Lipton, J. M. Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol. Rev. 56, 1–29 (2004).

    Article  CAS  Google Scholar 

  41. Remuzzi, G. & Bertani, T. Pathophysiology of progressive nephropathies. N. Engl. J. Med. 339, 1448–1456 (1998).

    Article  CAS  Google Scholar 

  42. Johnson, E. W., Blalock, J. E. & Smith, E. M. ACTH receptor-mediated induction of leukocyte cyclic AMP. Biochem. Biophys. Res. Comm. 157, 1205–1211 (1988).

    Article  CAS  Google Scholar 

  43. Lepique, A. P. et al. c-Myc protein is stabilized by fibroblast growth factor 2 and destabilized by ACTH to control cell cycle in mouse Y1 adrenocortical cells. J. Mol. Endocrinol. 33, 623–638 (2004).

    Article  CAS  Google Scholar 

  44. Wang, H., Jia, Z., Liu, G. & Yang, T. Adrenocorticotropic hormone attenuates diabetic nephropathy in Zucker diabetic fatty rats via inhibition of oxidative and inflammatory response. J. Am. Soc. Nephrol. 21, 825A (2010).

    Google Scholar 

  45. Roth, J. A., Kaeberle, M. L. & Hsu, W. H. Effects of ACTH administration on bovine polymorphonuclear leukocyte function and lymphocyte blastogenesis. Am. J. Vet. Res. 43, 412–416 (1982).

    CAS  PubMed  Google Scholar 

  46. Smith, E., Hammarstrom, L., Moller, E. & Matell, G. The effect of ACTH treatment on lymphocyte subpopulations in patients with myasthenia gravis. Neurology 26, 915–918 (1976).

    Article  CAS  Google Scholar 

  47. Cooper, A. et al. Alpha-melanocyte-stimulating hormone suppresses antigen-induced lymphocyte proliferation in humans independently of melanocortin 1 receptor gene status. J. Immunol. 175, 4806–4813 (2005).

    Article  CAS  Google Scholar 

  48. Andersen, G. N. et al. Quantitative measurement of the levels of melanocortin receptor subtype 1, 2, 3 and 5 and pro-opio-melanocortin peptide gene expression in subsets of human peripheral blood leucocytes. Scand. J. Immunol. 61, 279–284 (2005).

    Article  CAS  Google Scholar 

  49. Gonzalez-Rey, E., Chorny, A. & Delgado, M. Regulation of immune tolerance by anti-inflammatory neuropeptides. Nat. Rev. Immunol. 7, 52–63 (2007).

    Article  CAS  Google Scholar 

  50. Koyama, A., Fujisaki, M., Kobayashi, M., Igarashi, M. & Narita, M. A glomerular permeability factor produced by human T cell hybridomas. Kidney Int. 40, 453–460 (1991).

    Article  CAS  Google Scholar 

  51. Tracey, K. J. The inflammatory reflex. Nature 420, 853–859 (2002).

    Article  CAS  Google Scholar 

  52. Yeboah, M. M. et al. Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats. Kidney Int. 74, 62–69 (2008).

    Article  CAS  Google Scholar 

  53. Guarini, S. et al. Adrenocorticotropin reverses hemorrhagic shock in anesthetized rats through the rapid activation of a vagal anti-inflammatory pathway. Cardiovasc. Res. 63, 357–365 (2004).

    Article  CAS  Google Scholar 

  54. Cases, A. & Coll, E. Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int. Suppl. 68, S87–S93 (2005).

    Article  Google Scholar 

  55. Rayner, B. L., Byrne, M. J. & van Zyl Smit, R. A prospective clinical trial comparing the treatment of idiopathic membranous nephropathy and nephrotic syndrome with simvastatin and diet, versus diet alone. Clin. Nephrol. 46, 219–224 (1996).

    CAS  PubMed  Google Scholar 

  56. Rabelink, A. J., Hene, R. J., Erkelens, D. W., Joles, J. A. & Koomans, H. A. Partial remission of nephrotic syndrome in patient on long-term simvastatin. Lancet 335, 1045–1046 (1990).

    Article  CAS  Google Scholar 

  57. Thomas, M. E. et al. Simvastatin therapy for hypercholesterolemic patients with nephrotic syndrome or significant proteinuria. Kidney Int. 44, 1124–1129 (1993).

    Article  CAS  Google Scholar 

  58. Chan, P. C. et al. Lovastatin in glomerulonephritis patients with hyperlipidaemia and heavy proteinuria. Nephrol. Dial. Transplant. 7, 93–99 (1992).

    Article  CAS  Google Scholar 

  59. Ghiggeri, G. M. et al. Depletion of clusterin in renal diseases causing nephrotic syndrome. Kidney Int. 62, 2184–2194 (2002).

    Article  CAS  Google Scholar 

  60. Candiano, G. et al. Apolipoproteins prevent glomerular albumin permeability induced in vitro by serum from patients with focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 12, 143–150 (2001).

    CAS  PubMed  Google Scholar 

  61. Berg, A. L. & Nilsson-Ehle, P. Direct effects of corticotropin on plasma lipoprotein metabolism in man--studies in vivo and in vitro. Metabolism 43, 90–97 (1994).

    Article  CAS  Google Scholar 

  62. Rastaldi, M. P. et al. Glomerular clusterin is associated with PKC-alpha/beta regulation and good outcome of membranous glomerulonephritis in humans. Kidney Int. 70, 477–485 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research work by R. Gong has been supported by research grants from Questcor, Foundation for Health, and NIH Grant R01DK092485.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

R. Gong declares that he has received research grants from Questcor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, R. The renaissance of corticotropin therapy in proteinuric nephropathies. Nat Rev Nephrol 8, 122–128 (2012). https://doi.org/10.1038/nrneph.2011.190

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing